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Announcements

• Midterm grades released

• Project midterm report due Tuesday, March 26
• Main goal: Obtain needed data & have a full pipeline that processes data, trains a model, 

and gets some results
• Compare this model with some baseline (either an even simpler model or a non-learning 

method)
• Results may or may not be “good”—just a starting point for final model
• Analyze errors and identify possible sources of improvement
• Full description on course website (click on “Final Project Information”)
• If any questions/issues, reach out to your CP 

• HW3 releasing soon, due April 4
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Common Exam Mistakes: 1(c)

• Answering “Neural Network” got 1 / 2 points
• Yes, neural networks can approximate any function

• But they will never actually compute the product of 3 features

• Better answer is to directly multiply the features together
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Common Exam Mistakes: 1(c)

• Partially correct answer: Use a kernelized method with a 
Φ(x) function that has certain properties
• But to run a kernel method, you have to specify the kernel 

function k(x, z)

• To use kernel trick, must show k(x, z) is efficient to compute

• A kernelized method never directly uses Φ, that’s why it has 
different efficiency properties
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Common Exam Mistakes: 5(b)

• Incomplete answer: Bad because it is not differentiable everywhere
• Hinge loss is also not differentiable everywhere, but SVM works

• Real problem: This function’s derivative is 0 everywhere it exists

• This means that all gradients are 0, so gradient descent does nothing
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Review: Deep Learning
• Task: Specifies the inputs & outputs

• Sentiment classification: Input = sentence, 
Output = positive/negative

• Object recognition: Input = picture, Output =
type of object

• Model: We combine building blocks that can 
transform the input to the output
• With parameters: Linear layer, Convolutional

layer, RNN layer, Word vector layer
• No parameters: sigmoid/tanh/ReLU, max

pooling, addition,

• Training: Minimize loss of our model’s 
outputs compared to the true outputs by 
updating parameters of all layers (that have 
them)
• Do this by gradient descent
• Backpropagation computes gradient w.r.t.

every parameter
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Word Vector Layer
Params: vw for each w in vocab

Linear Layer 2
Params: w2, b2

ReLU Layer

Linear Layer 1
Params: w1, b1

RNN Layer
Params: Wh, Wx, b, h0



Review: RNNs

• At each timestep t, run neural network that takes in 2 inputs 
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, 

word vectors 7
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Final hidden
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Initial hidden
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Output

Linear function of 
prev. hidden state

Linear function of 
current word vector

Same W’s & b for each timestep
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Review: Encoder vs. Decoder

• First run an RNN over 
text

• Use the final hidden 
state as an “encoding” 
of the entire sequence

• Use this as features, 
train a classifier on top
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Review: Encoder vs. Decoder

Decoder model: Generates words one at a time
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RNNs vs. Transformers (Encoders)
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RNNs Transformers

• Input = sequence
of vectors, representing 

words
• Output = sequence of 

hidden state vectors, one 
for each input word

• Process a 
sentence one word at a 

time
• Each “step” of 

computation is reading 
one more word (time 

dimension)
• Final encoding of 
sentence = final word’s 

hidden state

• Process all words 
of the sentence at the 
same time (in parallel)
• Each “step” of 

computation is applying 
one more layer (depth 
dimension; more like a 

CNN)
• Final encoding of 
sentence = any word’s 
hidden state from the 

final layer



Review: Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment
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Review: Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies
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He ate steak with ketchup

He ate steak with a fork

Goes with “steak”

Modifies “ate”



Review: Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships
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Review: Attention
• Compute similarity between 

decoder hidden state and each 
encoder hidden state
• E.g., dot product, if same size

• Normalize similarities to 
probability distribution with 
softmax

• Output: “Context” vector c = 
weighted average of encoder 
states based on the 
probabilities 
• No new parameters (like 

ReLU/max pool)
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Review: Attention as Retrieval

• Consider a search engine:
• Queries: What you are 

looking for
• E.g., What you type into 

Google search

• Keys: Summary of what 
information is there
• E.g., Text from each webpage

• Values: What to give the user
• E.g., The URL of each 

webpage
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Review: Attention

(8) Attention Layer

• Inputs (all vectors of length d):
• Query vector q
• Key vectors k1, …, kT

• Value vectors v1, …, vT

• Output (also vector of length d)
• Dot product q with each key vector kt to get score st:

• Softmax to get probability distribution p1, …, pT:

• Return weighted average of value vectors:
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q k1, …, kT v1, …, vT

Output vector

Attention Layer
No parameters

How well does the 
query match each key?

Dominated by the values corresponding 
to the “best-matching” keys



Today: Can we use Attention for Everything?

• Modeling relationships between words
• Translation alignment
• Syntactic dependencies
• Coreference relationships

• Long range dependencies
• E.g., consistency of characters in a novel

• Attention captures relationships & 
doesn’t care about “distance,” unlike 
RNNs

• Let’s replace RNN’s with an architecture 
based solely on MLP’s + attention
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Today: The Transformer Architecture

• Input: Sequence of words

• Output: Sequence of hidden state vectors, one 
per word

• Same “type signature” as RNN

• Motivation
• Process all words at the same time, don’t do 

explicit sequential processing
• Let attention figure out which words are relevant 

to each other
• Whereas RNN assumes sequence order is what 

matters

• “Attention is all you need”
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Transformer overview

• One transformer consists of 
• Initial embeddings for each word 

of size d
• Let T =#words, so initially we have 

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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Transformer overview

• One transformer consists of 
• Initial embeddings for each word 

of size d
• Let T =#words, so initially we have 

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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Feedforward layer

• Input: T x d matrix

• Output: Another T x d matrix

• Apply the same MLP separately 
to each d-dimensional vector
• Linear layer from d to dhidden

• ReLU (or other nonlinearity)
• Linear layer from dhidden to d

• Note: No information moves 
between tokens here
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Transformer overview

• One transformer consists of 
• Initial embeddings for each word 

of size d
• Let T =#words, so initially we have 

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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Modifying Attention

• What is a multi-headed 
attention layer???

• Similar to attention we’ve 
seen, but need to make 3 
changes…
• Self-attention (no separate 

encoder & decoder)
• Separate queries, keys, and 

values
• Multi-headed
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Change #1: Self-Attention

• Previously: Decoder state 
looks for relevant encoder 
states

• Self-attention: Each encoder
state now looks for relevant 
(other) encoder states

• Why? Build better 
representation for word in 
context by capturing 
relationships to other words
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Change #1: Self-attention

• Take x1 and dot product it with all T 
inputs (including itself)

• Apply softmax to convert to probability 
distribution

• Compute output o1 as weighted sum of 
inputs
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Change #1: Self-attention

• Take x1 and dot product it with all T 
inputs (including itself)

• Apply softmax to convert to probability 
distribution

• Compute output o1 as weighted sum of 
inputs

• Repeat for t=2, 3, …, T

• Replacement for recurrence
• RNN only allows information to flow 

linearly along sequence

• Now, information can flow from any index 
to any other index, as determined by 
attention
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Change #2: Separate queries, keys, and values

• Recall: Attention uses vectors in 
three different ways
• As “query” for current index
• As “keys” to match with query
• As “values” when computing output

• Idea: Use separate vectors for each 
usage
• What each index “looks for” different 

from what it “matches with”
• What you store in output different 

from what you “look for”/“match with”
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+ .5 + .3 + .01= .19

Change #2: Separate queries, keys, and values

• Apply 3 separate linear layers to each of x1, 
…, xT to get

• Queries [q1, …, qT], each qt = WQ * xt

• Keys [k1, …, kT], each kt = WK * xt

• Values [v1, …, vT], each vt = WV * xt

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d to 
dimension dattn

• Dot product q1 with [k1, …, kT]

• Apply softmax to get probability 
distribution

• Compute o1 as weighted sum of [v1, …, vT]

• Repeat for t = 2, …, T
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+ .5 + .3 + .01= .19

Matrix form
• Apply 3 separate linear layers to input 

matrix X (T x din) to get
• Query matrix Q = (WQ * XT)T

• Keys K = (WK * XT)T

• Values V = (WV * XT)T

• Note: This adds parameters WQ, WK, WV

• Compute Q x KT (T x T matrix)
• Each entry is dot product of one query 

vector with one key vector

• Normalize each row with softmax to get 
matrix of probabilities P

• Output = P x V
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• Quadratic in T

• All you need is fast matrix multiplication

• All indices run in parallel



Change #3: Making it Multi-headed

• Instead of doing 
attention once, have n 
different “heads”
• Each has its own 

parameters maps to 
dimension dattn = d/n 

• Concatenate at end to 
get output of size T x d

30
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Change #3: Making it Multi-headed

• Instead of doing attention 
once, have n different 
“heads”
• Each has its own parameters 

maps to dimension dattn = d/n 
• Concatenate at end to get 

output of size T x d

• Why? Different heads can 
capture different 
relationships between words
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The Multi-headed Attention building block

(9) Multi-headed Attention Layer

• Input: List of vectors x1, …, xT, each of size d
• Equivalent to a T x d matrix 

• Output: List of vectors h1, …, ht, each of size d
• Equivalent to another T x d matrix

• Formula: For each head i:
• Compute Q, K, V matrices using Wi

Q, Wi
K, Wi

V

• Compute self attention output using Q, K, V to yield 
T x dattn matrix

• Finally, concatenate results for all heads

• Parameters:
• For each head i, parameter matrices Wi

Q, Wi
K, Wi

V of 
size dattn x d

• (# of heads n is hyperparameter, dattn = d/n)

• In pytorch: nn.MultiheadAttention()
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Input x1, …, xT, each shape d

Multi-headed attention layer
Params: Wi

Q, Wi
K, Wi

V 

for i = 1, …, n

Output h1, …, hT, each shape d

x1 x2 x3 x4 x5
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What do attention heads learn?

• This attention head seems to go 
from a pronoun to its antecedent 
(who the pronoun refers to)

• Other heads may do more boring 
things, like point to the 
previous/next word
• In this way, can do RNN-like things as 

needed
• But attention also can reach across 

long ranges
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Transformer overview

• One transformer consists of 
• Initial embeddings for each word 

of size d
• Let T =#words, so initially we have 

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer
• Feedforward layer 
• Both take in T x d matrix and 

output a new T x d matrix

• Plus some bells and whistles…
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Embedding layer

• As before, learn a vector for each 
word in vocabulary

• Is this enough?
• Both attention and feedforward layers 

are order invariant

• Need the initial embeddings to also 
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index

35

John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4
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word vectors

positional 
embeddings

sum



Transformer overview

• How does a Transformer “work”?

• Input layer: Specify each word & its 
position in the sequence

• Multi-headed attention layers: For 
each word, retrieve information 
about related words, incorporate into 
the word’s representation

• Feedforward layers: Do additional 
non-linear processing of the 
information we have about the each
word (independently)
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Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in 
series

• Transformers
• Quadratic in sequence length (T x T 

matrices)

• But can be parallelized (big matrix 
multiplication)
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Transformer overview

• One transformer consists of 
• Initial embeddings for each word 

of size d
• Let T =#words, so initially we have 

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer
• Feedforward layer 
• Both take in T x d matrix and 

output a new T x d matrix

• Plus some bells and whistles…
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The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Byte Pair Encoding

• Normal word vectors have 
a problem: How to deal 
with super rare words?
• Names? Typos?

• Vocabulary can’t contain 
literally every possible word…

• Solution: Tokenize string 
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens
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Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’, 
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword 
tokens



The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1 with 
[k1, …, kT]”

• Actually, you take dot product and 
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down 

encourages more even attention at 
beginning

42

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix



≈ 

Scaled dot product attention

• Earlier I said, “Dot product q1 with 
[k1, …, kT]”

• Actually, you take dot product and 
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down 

encourages more even attention at 
beginning
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≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a 
chance to influence



The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Residual Connections

• Feedforward and multi-headed 
attention layers
• Take in T x d matrix X

• Output T x d matrix O

• We add a “residual” connection: 
we actually use X + O as output
• Makes it easy to copy information 

from input to output

• Think of O as how much we 
change the previous value

• Same idea also common in 
CNNs!
• Reduces vanishing gradient issues
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Layer Normalization (“LayerNorm”)

• LayerNorm is a layer/building block that “normalizes” a vector

• Input x: vector of size d

• Output y: vector of size d

• Formula:

• Parameters
• a & b are scalar parameters, let model learn good scale/shift

• Without these, all vectors forced to have mean=0, variance=1

• ɛ is hyperparameter: Some small number to prevent division by 0
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Mean of components of x

Variance of components of x

1. Normalize: Subtract by mean, 
divide by standard deviation

2. Rescale: Multiply by a, add b

x = [100, 200, 100, 0]

μ = 100

σ2 = ¼ * (02 + 1002 + 02 + 1002) = 5000 

Normalized x =

[0, 100, 0, -100] / 5000  

= [0, 1.4, 0, -1.4] (If ɛ ≈ 0)

Output = [b, 1.4a+b, b, -1.4a+b]

Normalized x



LayerNorm in Transformers

• After every feedforward & multi-headed attention layer, we also add 
Layer Normalization
• Input: vectors x1, …, xT

• Compute μ and σ2 for each vector

• Normalize each vector

• Use the same a and b to rescale each vector

• Is applied after residual connection
• Output of each layer is

• Why? Stabilizes optimization by avoiding very large values
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The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections

• Instead, all “communication” between words in sequence is handled by 
attention

• Have multiple attention “heads” to learn different types of relationships 
between words

• Most famous modern language models (e.g., ChatGPT) are 
Transformers!
• Next time: Transformers as Decoders, Pre-training

• Later: Transformers + Reinforcement Learning = ChatGPT
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