Transformers, Part I

Robin Jia
USC C5CI 467, Spring 2024
March 19, 2024

Announcements

» Midterm grades released

* Project midterm report due Tuesday, March 26

« Main goal: Obtain needed data & have a full pipeline that processes data, trains a model,
and gets some results

Corr;]p%r)e this model with some baseline (either an even simpler model or a non-learning
metho

Results may or may not be “good”—just a starting point for final model
Analyze errors and identify possible sources of improvement

Full description on course website (click on “Final Project Information”)
« If any questions/issues, reach out to your CP

 HW3 releasing soon, due April 4

Common Exam Mistakes: 1(c)

(c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic
centimeters. Therefore, he think that a good formula for FW should involve features
where 3 of the original features are multiplied together.

ii. (4 points) Describe two different ways Ryan could train a model to learn the type of
formula he is looking for. Explain your answer in detail.

« Answering “Neural Network” got 1 / 2 points
* Yes, neural networks can approximate any function
 But they will never actually compute the product of 3 features
 Better answer is to directly multiply the features together

Common Exam Mistakes: 1(c)

(c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic
centimeters. Therefore, he think that a good formula for FW should involve features
where 3 of the original features are multiplied together.

ii. (4 points) Describe two different ways Ryan could train a model to learn the type of
formula he is looking for. Explain your answer in detail.

» Partially correct answer: Use a kernelized method with a
®(x) function that has certain properties

 But to run a kernel method, you have to specify the kernel
function k(x, z)

 To use kernel trick, must show k(x, z) is efficient to compute

A kernelized method never directly uses @, that's why it has
different efficiency properties

Common Exam Mistakes: 5(b)

(b) (5 points) Consider a linear model with parameter vector w € R? for binary classification.
For a given training dataset, we can compute the zero-one loss as follows:

T

L(w) = Z I[yDw ' 2 <).

1=1

Recall that 1[-] is the indicator function that is 1 if the input is true, and 0 if it is false. Is
it possible to use gradient descent to learn w by minimizing this loss function?

 Incomplete answer: Bad because it is not differentiable everywhere
« Hinge loss is also not differentiable everywhere, but SVM works
 Real problem: This function’s derivative is 0 everywhere it exists
» This means that all gradients are 0, so gradient descent does nothing

. . 1 ihear Laye
Review: Deep Learning Satborer <
» Task: Specifies the inputs & outputs % .ReLU LETED

- Sentiment classification: Input = sentence, S Linear Layer 1
Output = positive/negative X arams:w),
« Object recognition: Input = picture, Output = o t
type of object % m hp hfz hf hf hs
* Model: We combine building blocks that can < RNN L
transform the input to the output T | ayer
« With parameters: Linear layer, Convolutional o Params.
layer, RNN layer, Word vector layer . Word Vector Laver
* No parameters: sigmoid/tanh/RelLU, max y
pooling, addition, Params@for each w in vocab
« Training: Minimize loss of our model’s = N AN TR AN
outputs com to the true outputs by 1 | %{ é 4 >
updatingparametersXf all layers (that have nput words wy, ..., Wy

them)
Do this by gradient descent

« Backpropagation computes gradient w.r.t.
every parameter

Review: RNNs

Initial hidden Hidden Hidden Hidden Final hidden
state h, state h; state h, state h, state h; Output
—— T \N— [\(— | —— (— [\—

T\ L\ L g TJ

question
Same W’'s & b for each timestep

ht — tanh (@ht—l +@.’Bt @
« At each timestep t, run neural network that takes in 2 inputs \) -

(or 1 big input, by concatenation) Linear function 'of Linear function of
« Previous hidden state h, prev. hidden state current word vector
» Vector for current word x,

 Learn linear function of both inputs, add bias, apply non-linearity

« Parameters: Recurrence params (W,, W,, b), initial hidden state h,,
word vectors

Review: Encoder vs. Decoder

Encoder model: Converts sentence to vector “encoding”

Output First run an RNN over
Classification } text
layer goes here . .
) Final « Use the final hidden
hg — |, —» |y —> |hg — . —> |y | “encoding” state as an “encoding”
L) of sentence of the entire sequence
1 | l » Use this as features,

To be or question train a classifier on top

Review: Encoder vs. Decoder

Decoder model: Generates words one at a time

Desired output; To be or [END]
[P(w;) P(w, | To) P(w; | To be) P(w-,, [To be..question)]

Softmax
Regression-style
classification over
T T T Vocabulary + [END]

To be question

hO — h1 — h2 _> — hT

RNN s vs. Transformers (Encoders)

Transformers

 Process a
sentence one word at a
time

« Each “step” of
computation is reading
one more word (time
dimension)

* Final encoding of
sentence = final word'’s
hidden state

* Process all words
of the sentence at the
same time (in parallel)

« Each “step” of
computation is applying
one more layer (depth

dimension; more like a

CNN)

« Final encoding of
sentence = any word’s
hidden state from the

final layer

* Input = sequence
of vectors, representing
words
« OQOutput = sequence of
hidden state vectors, one
for each input word

Review: Challenges of modeling sequences

3] o = : : :
s |85, ¥ %. 4 +Modeling relationships between
25 colEls[8 85, 58 &
ﬁ%%ﬁﬂﬂga‘aEq.—u v words
L' . .
ccord Translation alignment
sur

la
zone

économique

europeenne
d

éteé
signé
en
ao(t
1992

<end>

Review: Challenges of modeling sequences

Goes with “steak” » Modeling relationships between
words
He ate Steak Wlth kEtChUp e Translation alignment
Modifies “ate” Syntactic dependencies

He ate steak with a fork

12

Review: Challenges of modeling sequences

— » Modeling relationships between
“I voted for Nader because he was most
words
/\ . .
aligned with my values,” she said. Translation alignment

 Syntactic dependencies
 Coreference relationships

13

Review: Attention

« Compute similarity between
hidden state and each
encoder hidden state

* E.g., dot product, if same size

« Normalize similarities to
probability distribution with
softmax

 Output: “Context” vector ¢ =
weighted average of encoder
states based on the
probabilities

« No new parameters (like
RelLU/max pool)

6 el +.39 4 +.01

by b, b,

f f2 fa

.39 .01
-

Mt Product

b2 b1 ho h1 h2 h3

q [

am hungry

Normalize to probability
distribution w/ softmax

14

Review: Attention as Retrieval

Go gle training a machine translation model X & @& Q

Images Videos Perspectives Python Example Online Github Shopping News

About 174,000,000 results (0.18 seconds)

Pangeanic
I ' https://blog.pangeanic.com » train-machine-translation-e... 2]

How to train your machine translation engine

Oct 20, 2027 — A machine translation engine is software capable of translating texts from a

source language to a target language. Applying artificial ...
How To Train Your Machine... - 1. Incorporation Of The Base... - Tips For Improving The...

é Machine Learning Mastery
https://machinelearningmastery.com : Blog

How to Develop a Neural Machine Translation System from ...

Oct 6, 2020 — Machine translation is a challenging task that traditionally involves large
statistical models developed using highly sophisticated linguistic ...

O GitHub

https://google.github.io > nmt

Tutorial: Neural Machine Translation - seq2seq

For more details on the theory of Sequence-to-Sequence and Machine Translation models, we
recommend the following resources: ... The training script will save ...

Neural Machine Translation... - Alternative: Generate Toy Data - Training

« Consider a search engine:
Queries: What you are
looking for
* E.g., What you type into
Google search
Keys: Summary of what
information is there

* E.g., Text from each webpage

* E.g., The URL of each
webpage

Values: What to give the user

15

Review: Attention

(8) Attention Layer Output vector

* Inputs (all vectors of length d): I

* Query vector q How well does the

- Key vectorsk;, ..., k;
- Value vectors v, .., vy

 Qutput (also vector of length d)

query match each key? Attention Layer
No parameters

Dot product g with each key vector k;, to get score s,
St = QTkt
 Softmax to get probability distribution p,, ..., p~ q

est

Z;r: 1 e

» Return weighted average of value vectors:

Pt =

ZT: ’ Dominated by the values corresponding
i Pt 10 the “best-matching” keys

Today: Can we use Attention for Everything?

Modeling relationships between words
» Translation alignment
» Syntactic dependencies
» Coreference relationships

Long range dependencies
» E.g., consistency of characters in a novel

Attention captures relationships &

doesn’t care about “distance,” unlike
RNNs

Let's replace RNN's with an architecture
based solely on MLP’s + attention

Today: The Transformer Architecture

e e, ed ey

Input: Sequence of words

Output: Sequence of hidden state vectors, one
per word

Same “type signature” as RNN

Motivation

* Process all words at the same time, don’t do
I explicit sequential processing

: « Let attention figure out which words are relevant
John kicked the ball to each other

« Whereas RNN assumes sequence order is what
matters

« “Attention is all you need”

Transformer

Transformer overview

Final T x d matri :
& & €1 |54 TRV RS « One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward o Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
U U, U |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

#words=T =4

Transformer overview

Final T x d matri :
& & €1 |54 TRV RS « One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward » Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
U U, U |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

#words=T =4

Feedforward layer

04 |0
P
hi |h,
P
Xy %,

Output T x d matrix
Linear

Hidden states
(T X d};4gen Matrix)

Linear + ReLU

Input T x d matrix

 |Input: T x d matrix
* Output: Another T x d matrix

* Apply the same MLP separately

to each d-dimensional vector
* Linear layer from d to d; 4qen
« ReLU (or other nonlinearity)
* Linear layer from d,4q4e, t0 d

 Note: No information moves
between tokens here

21

Transformer overview

Final T x d matri .
& & s » One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward - Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
Uy U, U3 |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

John kicked the ball #words=T=4

22

Modifying Attention

) « What is a multi-headed
C|= 0 &*3%0eg +.0T & attention layer???

« Similar to attention we've

.6 .39 .01 Normalize to probability
4 distribution w/ softmax seen, but need to make 3
T] . changes...
%ﬁ .J/\Dot Product - Self-attention (no separate
encoder & decoder)
e, €; h, « Separate queries, keys, and
values

/ am hungry e Multi-headed

23

Change #1: Self-Attention

 Previously: Decoder state
looks for relevant encoder
states

» Self-attention: Each encoder
state now looks for relevant

_ADN Product (other) encoder states
« Why? Build better

Cl=.6leq+.39 g, +.01 |eg

.6 .39 .01 Normalize to probability
T T 1 distribution w/ softmax

e; h, representation for word in
context by capturing

| am hungry relationships to other words

24

Change #1: Self-attention

» Take x, and dot product it with all T
inputs (including itself)

» Apply softmax to convert to probability

distribution
19 5 3 .01 Probabilities forx; . Compute output o, as weighted sum of
1 2 1.5 -1 Dot products for x, nputs

X1 X5 X3 X, Input T x d matrix

Change #1: Self-attention

04

.01

Output T x d matrix

Probabilities for x;

Dot products for x,

Input T x d matrix

Take x, and dot product it with all T
inputs (including itself)

» Apply softmax to convert to probability

distribution

Compute output 0, as weighted sum of
inputs

Repeat fort=2,3, .., T

Replacement for recurrence

« RNN only allows information to flow
linearly along sequence

* Now, information can flow from any index
to any other index, as determined by
attention

26

Change #2: Separate queries, keys, and values

Values
// \\ * Recall: Attention uses vectors in
three different ways

0 = - 19Xq| +.5 Xz + .3|Xg + .07, « As “query” for current index
« As “keys” to match with query
19 5 3 .01 Probabilities for x,; « As “values” when computing output
1 9 1.5 -1 Dotproducts forx, * ldea:Use separate vectors for each

usage
k ; ; X « What each index “looks for” different

from what it “matches with”
« What you store in output different

from what you “look for”/“match with”

X1 X5 X3 X, Input T x d matrix

27

Change #2: Separate queries, keys, and values

Values
// \\ « Apply 3 separate linear layers to each of x,,
.., X7 tO get
0q = Vi V2 V3 Va * Queries [q;, .., 9], each g, = WA * x,

« Keys [k, ..., k{], each k, = WK * x,
 Values [v,, .., v{], each v, = WV * x,
« Note: This adds parameters WQ, WK, WV

1 2 1.5 -1 Dot products for X, - Each linear layer maps from dimension d to
dimension d_,

K, K Kg ki KeysT xd,, matrix » Dot product g, with [k, ..., kil
_[% — * Apply softmax to get
o ep Q3 |dq Queries Txdy, matrix « Compute o, as weighted sum of [v,, .., v-]

Repeatfort=2,..,T

28

Matrix form

/yaluei\

O_I = V1 V2 V3 V4

1 2 1.5 -1 Dot products for x,

K K Kg ki KeysT xd,, matrix
%7—
d; d, ds g4 Queries T x d,, matrix

e Quadraticin T
* All you need is fast matrix multiplication
 All indices run in parallel

Apply 3 separate linear layers to input
matrix X (T x d,)) to get

« Query matrix Q = (WQ* XT)T

« Keys K= (WK*XN)T

« Values V= (WV*XD)T

* Note: This adds parameters WQ, WK, WV

« Compute Q x KT (T x T matrix)

« Each entry is dot product of one query
vector with one key vector

« Normalize each row with softmax to get

matrix of probabilities

 Output=r~xV

29

Change #3: Making it Multi-headed

» Instead of doing
Eachheadoutputs ~ @tt€ntion once, have n

11 f112 [113 fhi4 21| fl22 123 flo4 Txd/2matrix(n=2) different “heads”
Attention head #1 | | Attention head #2 « EFach has its own

T~ —" parameters maps to
dimension d_,, = d/n

 Concatenate at end to
get output of size T x d

X1 X5 X3 X, Input T x d matrix

30

Change #3: Making it Multi-headed

Concatenate * Instead of doin% attention

once, have n different

Each head outputs “heads”
1 3 9 [21 ['22 [23[24 T x d/2 matrix (n=2) « Each has its own parameters

: : maps to dimension d_, = d/n
Attention head #1 | | Attention head #2 . Concatenate at end to get

~——" output of size T x d

' : « Why? Different heads can
X X Xg |X4 InputT xdmatrix capture different
relationships between words

31

The Multi-headed Attention building block

(9) Multi-headed Attention Layer Output hy, ..., hy, €ach shape d

« Input: List of vectors x;, ..., X7, each of size d hy hy hy hy hy

- Equivalent to a T x d matrix ‘ ‘ ‘ ‘ ‘
* Output: List of vectors h,, .., h,, each of size d : :

« Equivalent to another T x d matrix Multi-headed a;ten’f(lon l/ayer
« Formula: For each head i: Parafr:rs.i. ZV% 'W‘n' Wi

« Compute Q, K, V matrices using W,%, WK, W, _—

« Compute self attention output using Q, K, V to yield]]]]]

T x d,, Matrix

- Finally, concatenate results for all heads X9 X X3 Xy Xg

« Parameters: Input x,, ..., X1, each shape d

« For each head i, parameter matrices W,2, WX, W.V of
size d_, x d

* (# of heads nis hyperparameter, d_, = d/n)
In pytorch: nn.MultiheadAttention()

What do attention heads learn?

She

He

Gender-specific term

[Layer: 5 +

The
girl
and
the
boy
walked
home

She

Layer: 5 &

The
girl
and
the
boy
walked
home

He

The
girl
and
the
boy
walked
home

She

The
girl
and
the

walked
home

He

Layer: 5 %
Later

Alice
came
up

to
Bob

Layer: § 3

Later

Alice
came
up

to
Bob

He

Name

Later
Alice
up
to

Bob

She

Later

Alice
came
up

to
Bob

He

 This attention head seems to go
from a pronoun to its antecedent
(who the pronoun refers to)

« Other heads may do more boring
things, like point to the
previous/next word

« In this way, can do RNN-like things as
needed

e But attention also can reach across
long ranges

33

Transformer overview

€

€, €3

1

Feedforward

Multi-head Attention

Feedforward

Multi-head Attention

U,

John

U, Us

1 Embedding

kicked the

Uy

ball

Final Txdmatrix 4 One transformer consists of

* Initial embeddings for each word
of size d

« Let T =#words, so initially we have
a T x d matrix

« Alternating layers of
» “Multi-headed” attention layer
» Feedforward layer

» Both take in T x d matrix and
output a new T x d matrix

 Plus some bells and whistles...
Initial T x d matrix

#words=T =4

34

Embedding layer

* As before, learn a vector for each

word in vocabulary positional
oF P2 Ps3 Py embeddings
. I ?
Is this enough” N N . 1+ sum
 Both attention and feedforward layers
are order invariant Whohn -~ Wiicked Wne VE' word vectors

» Need the initial embeddings to also 1

encode order of words!
John kicked the Dball

» Solution: Positional embeddings
« Learn a different vector for each index
* Gets added to word vector at that index

35

Transformer overview

e, e, e |e, Final T xd matrix How does a Transformer “work™?
- Input layer: Specify each word & its
I position in the sequence
Feedforward Multi-headed attention layers: For
each word, retrieve information
Multi-head Attention about related words, incorporate into
the word’s representation
Feedforward - Feedforward layers: Do additional
: : non-linear processing of the
Multi-head Attention information we have about the each
word (independently)
U, u, U u, Initial T x d matrix
1 Embedding

John kicked the ball #words=T=4

36

Runtime comparison

fo_’f1_’f2_’f3_'f4 * RNNs

4) t 4 e Lj ‘
Jobt kicked the ball inear in sequence length |
 But all operations have to happen in
5 - el e, series
* Transformers
Feedforward

 Quadratic in sequence length (Tx T
Multi-head Attention matrices)

 But can be parallelized (big matrix
multiplication)

Feedforward

Multi-head Attention

U, U ug |uy

John kicked the ball

37

Transformer overview

€

€, €3

1

Feedforward

Multi-head Attention

Feedforward

Multi-head Attention

U,

John

U, Us

1 Embedding

kicked the

Uy

ball

Final Txdmatrix 4 One transformer consists of

« Initial embeddings for each word
of size d

« Let T =#words, so initially we have
a T x d matrix

« Alternating layers of
» “Multi-headed” attention layer
» Feedforward layer

» Both take in T x d matrix and
output a new T x d matrix

* Plus some bells and whistles...
Initial T x d matrix

#words=T =4

38

The Full Transformer

e, e, e, |e, Final Txdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —_ ___Addresidual - Scaled dot product
P Multi-head Attention connections + attention
Scale dot ——— LayerNorm . .
f;‘ dictz Feedforward | — » Residual connections
g < = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

39

Byte Pair Encoding

* Normal word vectors have
a problem: How to deal
with super rare words?

 Names? Typos?

« Vocabulary can't contain
literally every possible word...

e Solution: Tokenize String Ar' 'ag’,"orn’, “told’, “Fro', '.dO', 12 subword
into “subword tokens” “to’ “mind’, ‘L’ ‘oth’ 'lor’ 'ien’ tokens
« Common words = 1 token
« Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

40

The Full Transformer

e, e, e, |e, Final Txdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. — __Addresidual - Scaled dot product
P Multi-head Attention connections + attention
"
Scale dot — LayerNorm . .
e Feedforward | — » Residual connections
P < = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

41

Scaled dot product attention

 Earlier | s"aid, “Dot product g, with
[k, ..., Kol

« Actually, you take dot product and

then divide by /d ¢

0, = .19|Vq| + .5 Vg + .3|Vg+ .01|Vy4

19 5 3 .01 Probabilities for x,
* Why?
1 2 1.5 -1 Dot products for x; - If d large, dot product between
random vectors will be large
K, K Kg Ky KeysT xdmatrix « This makes probabilities close to 0/1
i%*— « Scaling dot products down
encourages more even attention at
as q, g4 |q4 Queries T x d matrix beginning

42

Scaled dot product attention

This is bad at beginning— - Earlier | said, “Dot product g, with
should give all positions a ks, ..., kq]”
0 = |V -
1 ~ |13 chancetoinfluence « Actually, you take dot product and
then divide by ,/d
=0 ~1 ~0 =0 Probabilities for x, YV @attn
* Why?
100 200 150 -100 Dot products for x, - If d large, dot product between
random vectors will be large
K, K Kg Ky KeysT xdmatrix « This makes probabilities close to 0/1
i%*— Scaling dot products down
encourages more even attention at
d; d, d3 ds Queries T x d matrix beginning

43

The Full Transformer

e, e, e, |e, Final Txdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —_ ___Addresidual - Scaled dot product
P Multi-head Attention connections + attention
Scale dot —— LayerNorm . .
f;‘ dict‘; Feedforward | — * Residual connections
g <~ = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

44

Residual Connections

 Feedforward and multi-headed

. O1+/x{ 044Xy [04+/xXq |04+/x _(I?utgut Wt/.re3|dual
attention layers X d matrix
« Takein T x d matrix X
 Output T x d matrix O 0, 0, of fo/ OutputT xd matrix
» We add a “residual” connection: |
we actually use X + O as output 1 1 I [1 Linear
» Makes it easy to copy information ,
from input to output h, h, hy | |h, (I-'lrlddsn Statest X
« Think of O as how much we X Cnidden MALTIX
change the previous value
] J P . 1 1 1 1 Linear + ReLU
« Same idea also common in
CNNs! X; X X4 YX4 InputT xdmatrix

* Reduces vanishing gradient issues

45

Layer Normalization (“LayerNorm”)

LayerNorm is a layer/building block that “normalizes” a vector

Input x: vector of size d

Output y: vector oj size d x = [100, 200, 100, 0]
Formula:

= ! E M f com ts of
= — X;
v d o ean or components or X

M =100

d
1
o y Z:(a:2 — 1)? Variance of components of x 02 =% * (02 + 1002 + 02 + 1002) = 5000
i—1

T — [1. Normalize: Subtract by mean, Normalized x =
y=a- Jo? T e + 0 divide by standard deviation [0, 100, 0,-100] / ¥5000

2. Rescale: Multiply by a, add b - [0,1.4,0,-1.4] (If £ = 0)

Parameters

* a & b are scalar parameters, let model learn good scale/shift
« Without these, all vectors forced to have mean=0, variance=1 Output = [b, 1.4a+b, b, -1.4a+b]

» € is hyperparameter. Some small number to prevent division by 0

46

LayerNorm in Transformers

 After every feedforward & multi-headed attention layer, we also add
Layer Normalization
* Input: vectors X4, ..., X7
« Compute p and o?for each vector
* Normalize each vector
» Use the same a and b to rescale each vector

* |s applied after residual connection
 Qutput of each layer is LayerNorm(z + Layer(x))

« Why? Stabilizes optimization by avoiding very large values

The Full Transformer

e, e, e, |e, Final Txdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —_ ___Addresidual - Scaled dot product
- Multi-head Attention connections + attention
Scale dot ——— LayerNorm . .
fj‘ dictz Feedforward | — » Residual connections
g < = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

48

Conclusion: Transformers

 “Attention is all you need”
* Get rid of recurrent connections

* Instead, all “communication” between words in sequence is handled by
attention

« Have multiple attention “heads” to learn different types of relationships
between words

« Most famous modern language models (e.g., ChatGPT) are
Transformers!
* Next time: Transformers as Decoders, Pre-training
 Later: Transformers + Reinforcement Learning = ChatGPT

	Default Section
	Slide 1: Transformers, Part I
	Slide 2: Announcements
	Slide 3: Common Exam Mistakes: 1(c)
	Slide 4: Common Exam Mistakes: 1(c)
	Slide 5: Common Exam Mistakes: 5(b)
	Slide 6: Review: Deep Learning
	Slide 7: Review: RNNs
	Slide 8: Review: Encoder vs. Decoder
	Slide 9: Review: Encoder vs. Decoder
	Slide 10: RNNs vs. Transformers (Encoders)
	Slide 11: Review: Challenges of modeling sequences
	Slide 12: Review: Challenges of modeling sequences
	Slide 13: Review: Challenges of modeling sequences
	Slide 14: Review: Attention
	Slide 15: Review: Attention as Retrieval
	Slide 16: Review: Attention
	Slide 17: Today: Can we use Attention for Everything?
	Slide 18: Today: The Transformer Architecture
	Slide 19: Transformer overview
	Slide 20: Transformer overview
	Slide 21: Feedforward layer
	Slide 22: Transformer overview
	Slide 23: Modifying Attention
	Slide 24: Change #1: Self-Attention
	Slide 25: Change #1: Self-attention
	Slide 26: Change #1: Self-attention
	Slide 27: Change #2: Separate queries, keys, and values
	Slide 28: Change #2: Separate queries, keys, and values
	Slide 29: Matrix form
	Slide 30: Change #3: Making it Multi-headed
	Slide 31: Change #3: Making it Multi-headed
	Slide 32: The Multi-headed Attention building block
	Slide 33: What do attention heads learn?
	Slide 34: Transformer overview
	Slide 35: Embedding layer
	Slide 36: Transformer overview
	Slide 37: Runtime comparison
	Slide 38: Transformer overview
	Slide 39: The Full Transformer
	Slide 40: Byte Pair Encoding
	Slide 41: The Full Transformer
	Slide 42: Scaled dot product attention
	Slide 43: Scaled dot product attention
	Slide 44: The Full Transformer
	Slide 45: Residual Connections
	Slide 46: Layer Normalization (“LayerNorm”)
	Slide 47: LayerNorm in Transformers
	Slide 48: The Full Transformer
	Slide 49: Conclusion: Transformers

