Transformers, Part I

Robin Jia USC CSCI 467, Spring 2024 March 19, 2024

Announcements

- Midterm grades released
- Project midterm report due Tuesday, March 26
 - Main goal: Obtain needed data & have a full pipeline that processes data, trains a model, and gets some results
 - Compare this model with some baseline (either an even simpler model or a non-learning method)
 - Results may or may not be "good"—just a starting point for final model
 - Analyze errors and identify possible sources of improvement
 - Full description on course website (click on "Final Project Information")
 - If any questions/issues, reach out to your CP
- HW3 releasing soon, due April 4

Common Exam Mistakes: 1(c)

- (c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic centimeters. Therefore, he think that a good formula for FW should involve features where 3 of the original features are multiplied together.
 - ii. (4 points) Describe **two** different ways Ryan could train a model to learn the type of formula he is looking for. Explain your answer in detail.
- Answering "Neural Network" got 1 / 2 points
 - Yes, neural networks can approximate any function
 - But they will never actually compute the product of 3 features
 - Better answer is to directly multiply the features together

Common Exam Mistakes: 1(c)

- (c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic centimeters. Therefore, he think that a good formula for FW should involve features where 3 of the original features are multiplied together.
 - ii. (4 points) Describe **two** different ways Ryan could train a model to learn the type of formula he is looking for. Explain your answer in detail.
- Partially correct answer: Use a kernelized method with a Φ(x) function that has certain properties
 - But to run a kernel method, you have to specify the kernel function k(x, z)
 - To use kernel trick, must show k(x, z) is efficient to compute
 - A kernelized method never directly uses Φ, that's why it has different efficiency properties

Common Exam Mistakes: 5(b)

(b) (5 points) Consider a linear model with parameter vector $w \in \mathbb{R}^d$ for binary classification. For a given training dataset, we can compute the **zero-one loss** as follows:

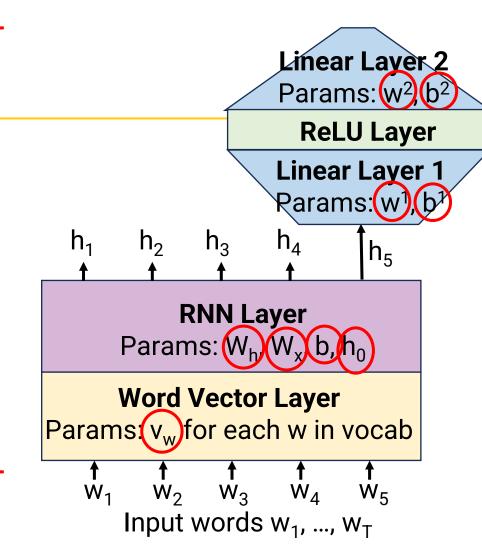
$$L(w) = \sum_{i=1}^{n} \mathbb{I}[y^{(i)} w^{\top} x^{(i)} \le 0].$$

Recall that $\mathbb{I}[\cdot]$ is the indicator function that is 1 if the input is true, and 0 if it is false. Is it possible to use gradient descent to learn w by minimizing this loss function?

- Incomplete answer: Bad because it is not differentiable everywhere
 - Hinge loss is also not differentiable everywhere, but SVM works
 - Real problem: This function's derivative is 0 everywhere it exists
 - This means that all gradients are 0, so gradient descent does nothing

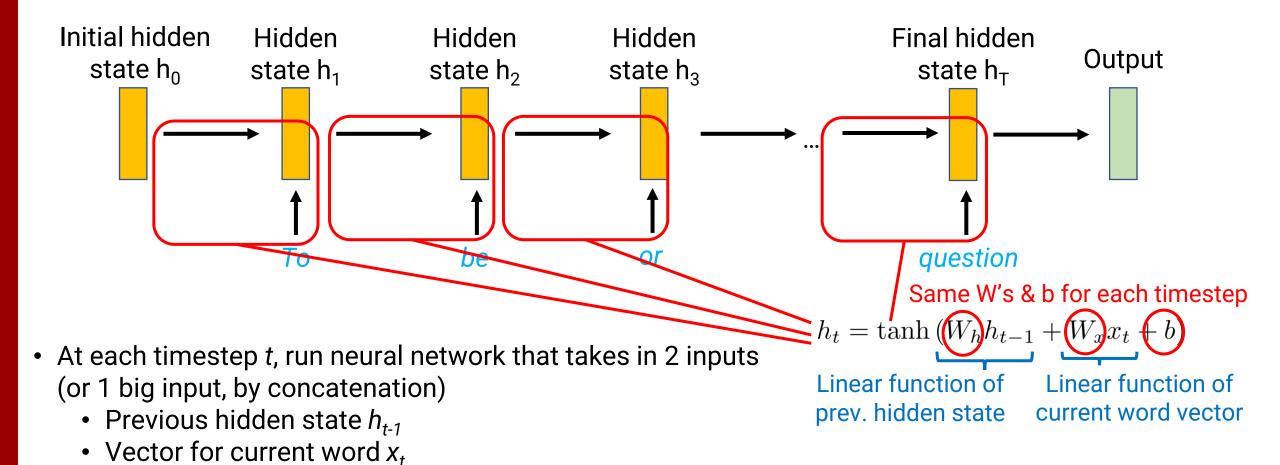
Review: Deep Learning

- Task: Specifies the inputs & outputs
 - Sentiment classification: Input = sentence, Output = positive/negative
 - Object recognition: Input = picture, Output = type of object
- Model: We combine building blocks that can transform the input to the output
 - With parameters: Linear layer, Convolutional layer, RNN layer, Word vector layer
 - No parameters: sigmoid/tanh/ReLU, max pooling, addition,
- Training: Minimize loss of our model's outputs compared to the true outputs by updating parameters of all layers (that have them)
 - Do this by gradient descent
 - Backpropagation computes gradient w.r.t. every parameter



Neural Network Model

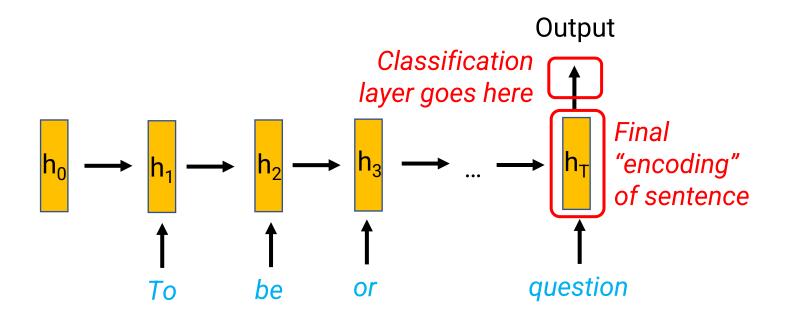
Review: RNNs



- Learn linear function of both inputs, add bias, apply non-linearity
- Parameters: Recurrence params (W_h, W_x, b) , initial hidden state h_0 , word vectors

Review: Encoder vs. Decoder

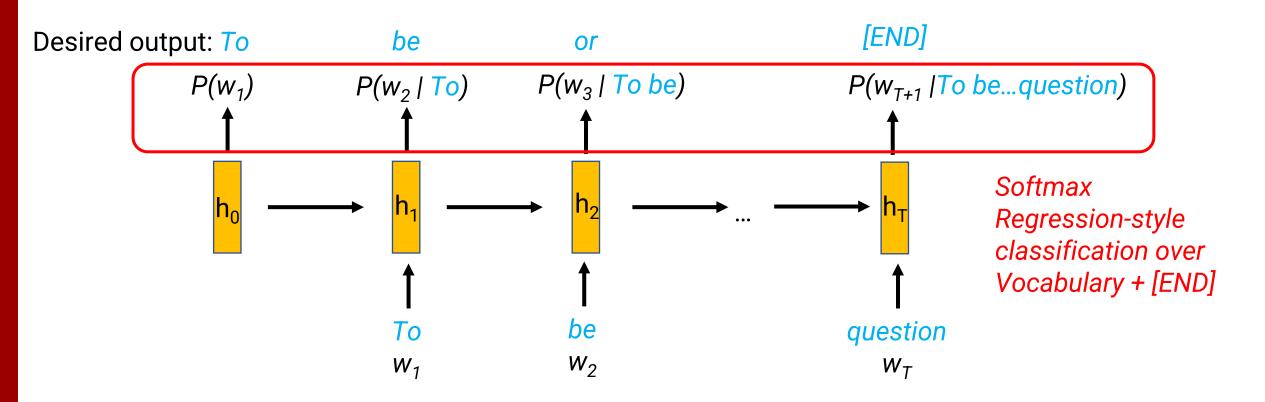
Encoder model: Converts sentence to vector "encoding"



- First run an RNN over text
- Use the final hidden state as an "encoding" of the entire sequence
- Use this as features, train a classifier on top

Review: Encoder vs. Decoder

Decoder model: Generates words one at a time



RNNs vs. Transformers (Encoders)

RNNs

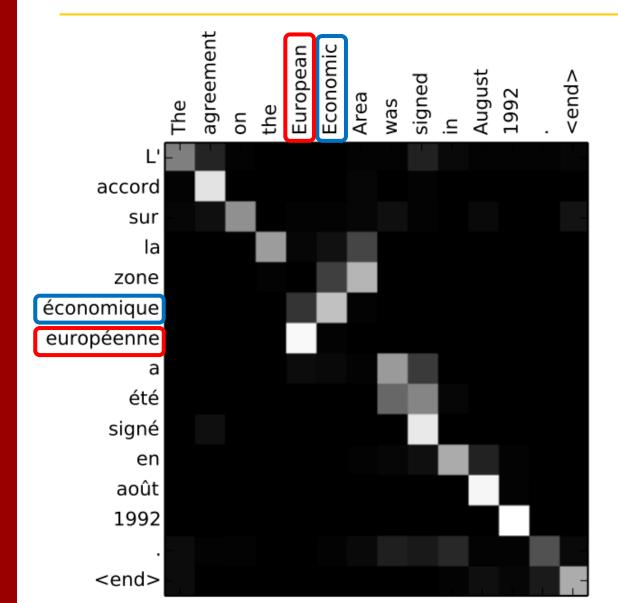
- Process a sentence one word at a time
- Each "step" of computation is reading one more word (time dimension)
- Final encoding of sentence = final word's hidden state

- Input = sequence of vectors, representing words
- Output = sequence of hidden state vectors, one for each input word

Transformers

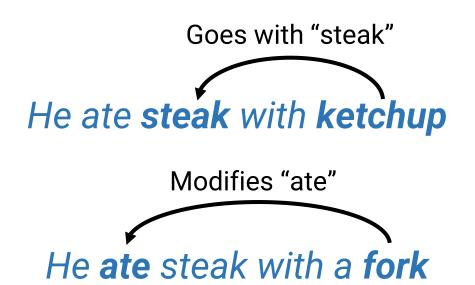
- Process all words
 of the sentence at the
 same time (in parallel)
- Each "step" of computation is applying one more layer (depth dimension; more like a CNN)
- Final encoding of sentence = any word's hidden state from the final layer

Review: Challenges of modeling sequences



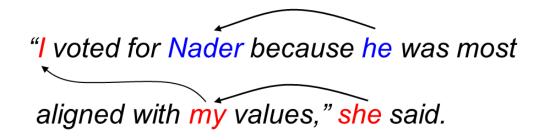
- Modeling relationships between words
 - Translation alignment

Review: Challenges of modeling sequences



- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies

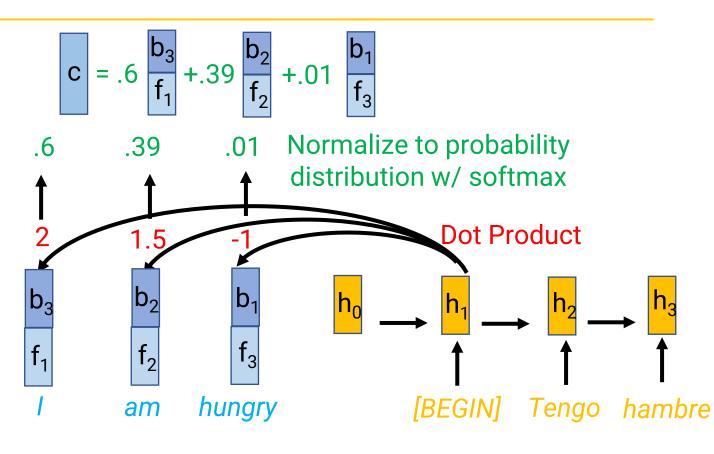
Review: Challenges of modeling sequences



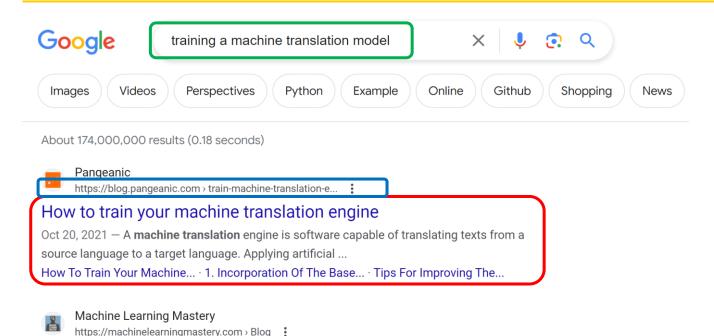
- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships

Review: Attention

- Compute similarity between decoder hidden state and each encoder hidden state
 - E.g., dot product, if same size
- Normalize similarities to probability distribution with softmax
- Output: "Context" vector c = weighted average of encoder states based on the probabilities
 - No new parameters (like ReLU/max pool)



Review: Attention as Retrieval



How to Develop a Neural Machine Translation System from ...

Oct 6, 2020 — **Machine translation** is a challenging task that traditionally involves large statistical **models** developed using highly sophisticated linguistic ...

Tutorial: Neural Machine Translation - seq2seq

For more details on the theory of Sequence-to-Sequence and **Machine Translation models**, we recommend the following resources: ... The **training** script will save ...

Neural Machine Translation... · Alternative: Generate Toy Data · Training

- Consider a search engine:
 - Queries: What you are looking for
 - E.g., What you type into Google search
 - Keys: Summary of what information is there
 - E.g., Text from each webpage
 - Values: What to give the user
 - E.g., The URL of each webpage

Review: Attention

(8) Attention Layer

- Inputs (all vectors of length *d*):
 - Query vector q
 - Key vectors k₁, ..., k_T
 - Value vectors v₁, ..., v_T
- Output (also vector of length d)
 - Dot product q with each key vector k_t to get score s_t : $s_t = q^\top k_t$
 - Softmax to get probability distribution p_1 , ..., p_{T} :

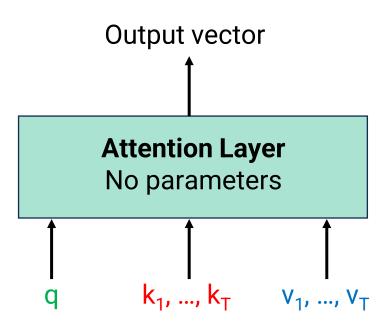
$$p_t = \frac{e^{s_t}}{\sum_{j=1}^T e^{s_j}}$$

Return weighted average of value vectors:

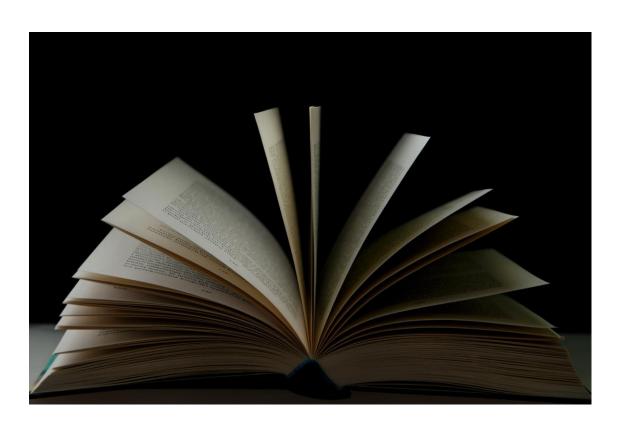


How well does the

query match each key?

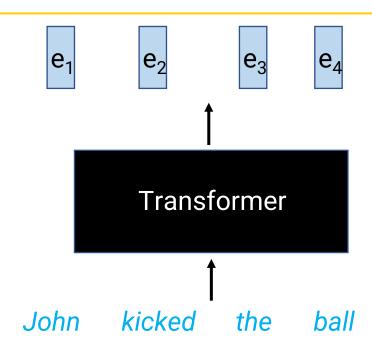


Today: Can we use Attention for Everything?



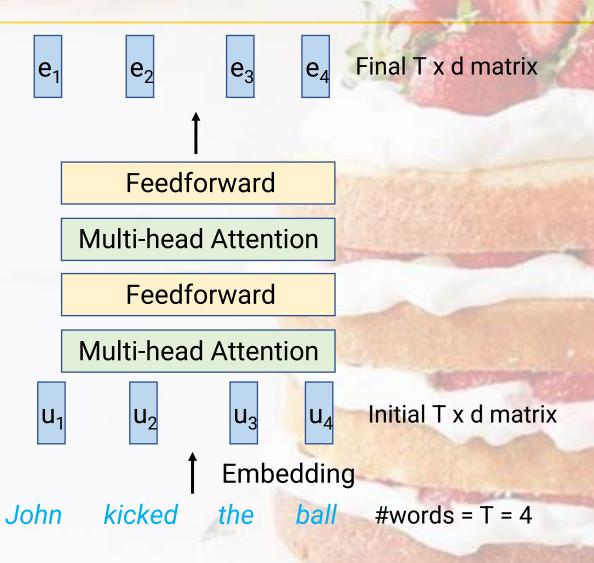
- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships
- Long range dependencies
 - E.g., consistency of characters in a novel
- Attention captures relationships & doesn't care about "distance," unlike RNNs
- Let's replace RNN's with an architecture based solely on MLP's + attention

Today: The Transformer Architecture



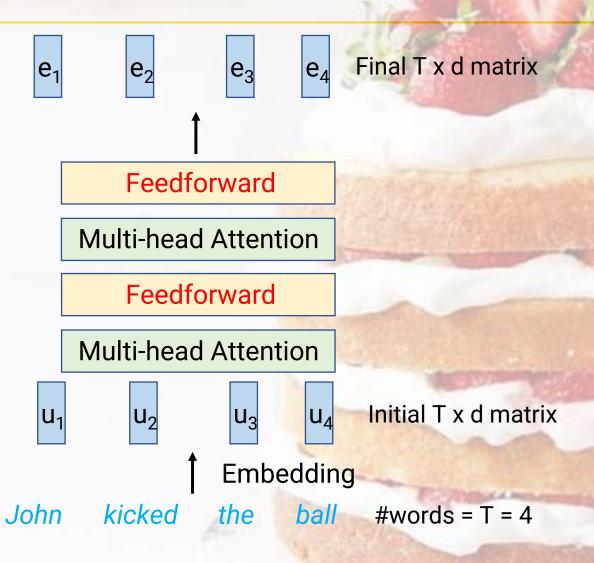
- Input: Sequence of words
- Output: Sequence of hidden state vectors, one per word
- Same "type signature" as RNN
- Motivation
 - Process all words at the same time, don't do explicit sequential processing
 - Let attention figure out which words are relevant to each other
 - Whereas RNN assumes sequence order is what matters
 - "Attention is all you need"

Transformer overview



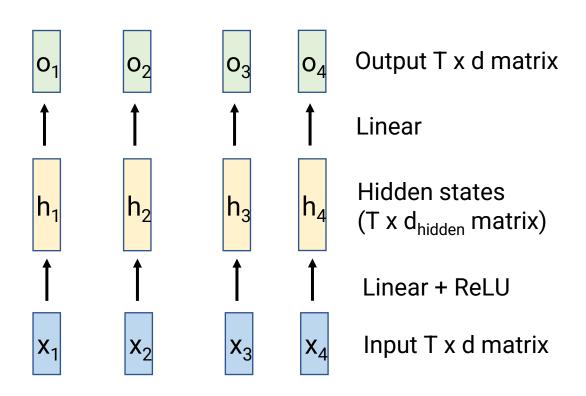
- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Transformer overview



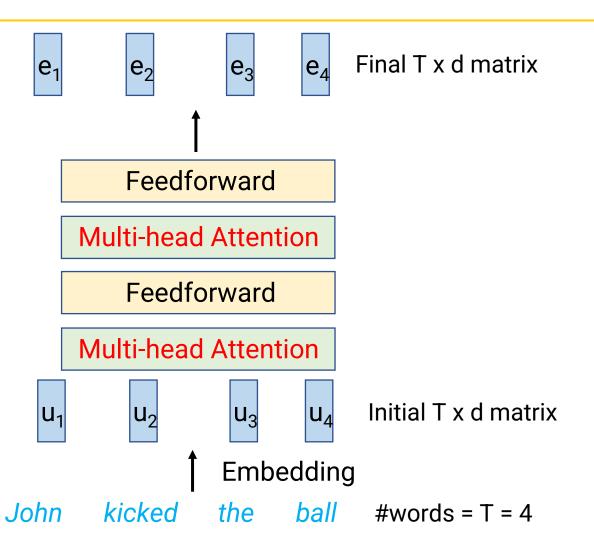
- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Feedforward layer



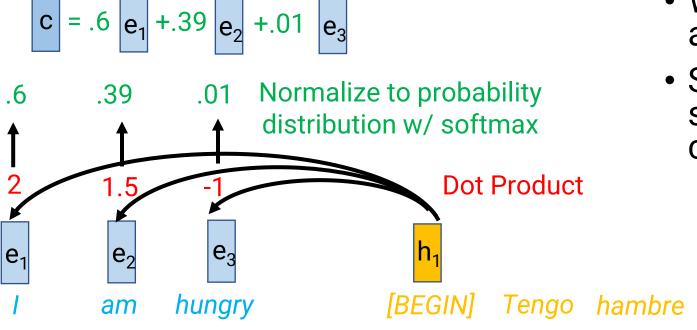
- Input: T x d matrix
- Output: Another T x d matrix
- Apply the same MLP separately to each d-dimensional vector
 - Linear layer from d to d_{hidden}
 - ReLU (or other nonlinearity)
 - Linear layer from d_{hidden} to d
- Note: No information moves between tokens here

Transformer overview



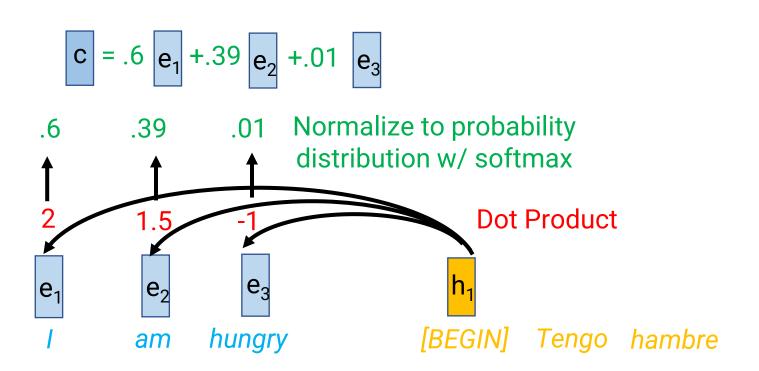
- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Modifying Attention



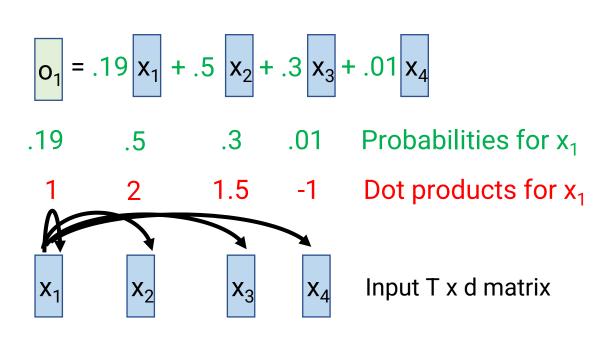
- What is a multi-headed attention layer???
- Similar to attention we've seen, but need to make 3 changes...
 - Self-attention (no separate encoder & decoder)
 - Separate queries, keys, and values
 - Multi-headed

Change #1: Self-Attention



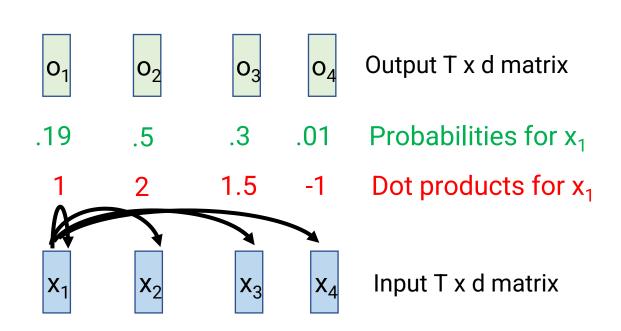
- Previously: Decoder state looks for relevant encoder states
- Self-attention: Each encoder state now looks for relevant (other) encoder states
- Why? Build better representation for word in context by capturing relationships to other words

Change #1: Self-attention



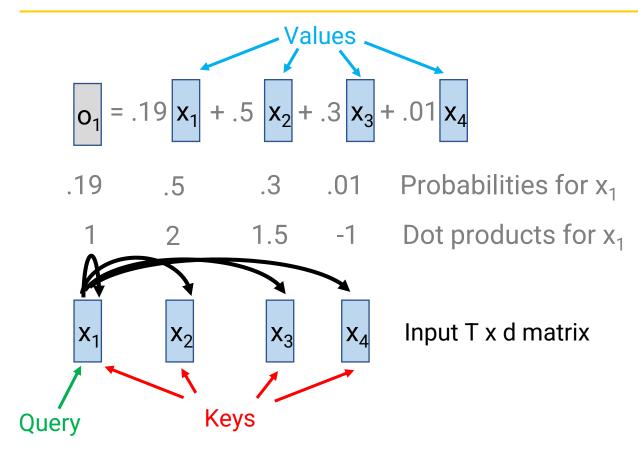
- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs

Change #1: Self-attention



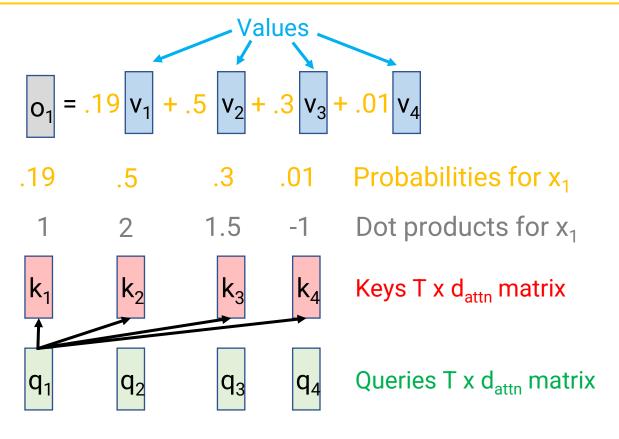
- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs
- Repeat for t=2, 3, ..., T
- Replacement for recurrence
 - RNN only allows information to flow linearly along sequence
 - Now, information can flow from any index to any other index, as determined by attention

Change #2: Separate queries, keys, and values



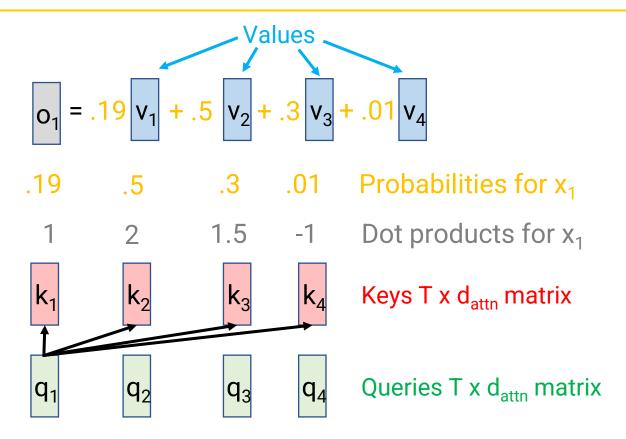
- Recall: Attention uses vectors in three different ways
 - As "query" for current index
 - As "keys" to match with query
 - As "values" when computing output
- Idea: Use separate vectors for each usage
 - What each index "looks for" different from what it "matches with"
 - What you store in output different from what you "look for"/"match with"

Change #2: Separate queries, keys, and values



- Apply 3 separate linear layers to each of x₁,
 ..., x_T to get
 - Queries $[q_1, ..., q_T]$, each $q_t = W^Q * x_t$
 - Keys [k₁, ..., k_T], each k_t = W^K * x_t
 - Values $[v_1, ..., v_T]$, each $v_t = W^{\vee} * x_t$
 - Note: This adds parameters W^Q, W^K, W^V
 - Each linear layer maps from dimension d to dimension d_{attn}
- Dot product q₁ with [k₁, ..., k_T]
- Apply softmax to get probability distribution
- Compute o_1 as weighted sum of $[v_1, ..., v_T]$
- Repeat for t = 2, ..., T

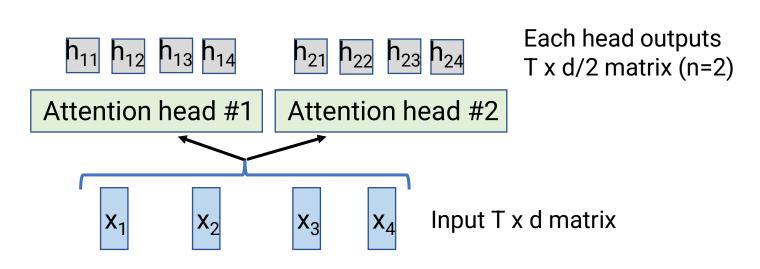
Matrix form



- Apply 3 separate linear layers to input matrix X (T x d_{in}) to get
 - Query matrix $Q = (W^Q * X^T)^T$
 - Keys K = (W^K * X^T)^T
 - Values V = (W^V * X^T)^T
 - Note: This adds parameters W^Q, W^K, W^V
- Compute Q x K^T (T x T matrix)
 - Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = P x V

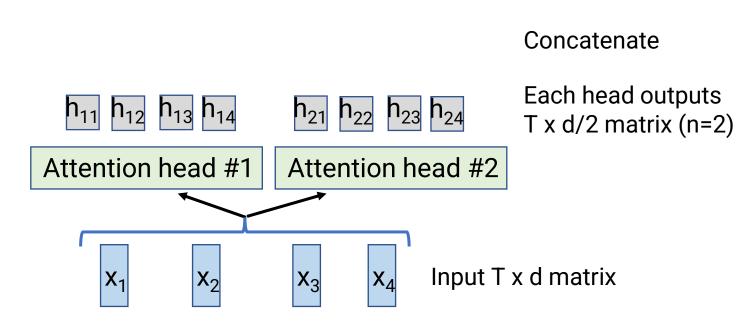
- Quadratic in T
- All you need is fast matrix multiplication
- All indices run in parallel

Change #3: Making it Multi-headed



- Instead of doing attention once, have n different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/n
 - Concatenate at end to get output of size T x d

Change #3: Making it Multi-headed



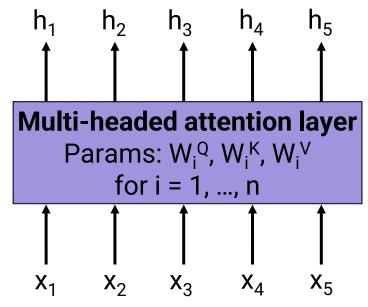
- Instead of doing attention once, have n different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/n
 - Concatenate at end to get output of size T x d
- Why? Different heads can capture different relationships between words

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

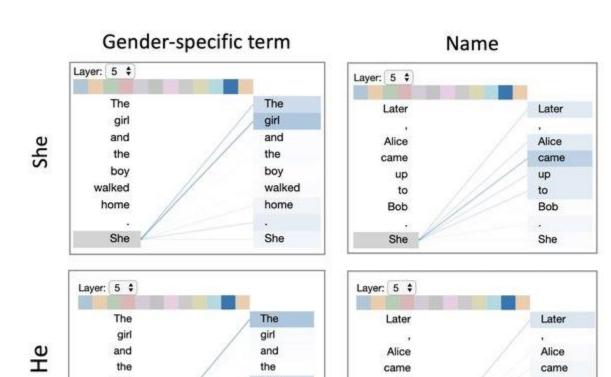
- Input: List of vectors x₁, ..., x_T, each of size d
 - Equivalent to a T x d matrix
- Output: List of vectors h₁, ..., h_t, each of size d
 - Equivalent to another T x d matrix
- Formula: For each head i:
 - Compute Q, K, V matrices using W_iQ, W_iK, W_iV
 - Compute self attention output using Q, K, V to yield T x d_{attn} matrix
 - Finally, concatenate results for all heads
- Parameters:
 - For each head i, parameter matrices W_iQ, W_iK, W_iV of size d_{attn} x d
 - (# of heads n is hyperparameter, d_{attn} = d/n)
- In pytorch: nn.MultiheadAttention()

Output h_1 , ..., h_T , each shape d



Input x_1 , ..., x_T , each shape d

What do attention heads learn?



walked

home

to

Bob

Bob

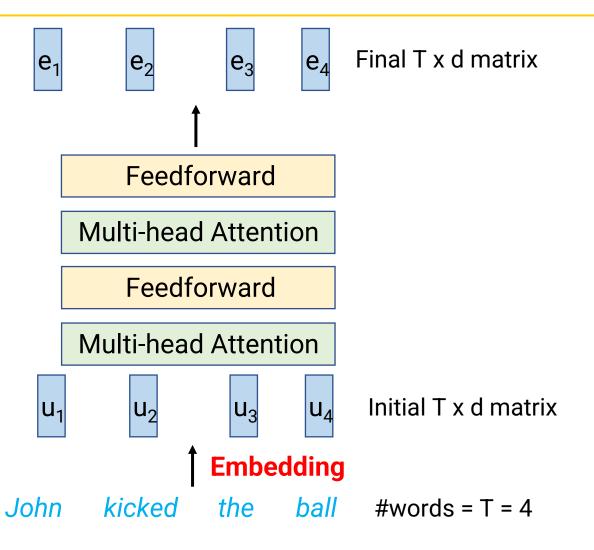
He

boy walked

home

- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
 - In this way, can do RNN-like things as needed
 - But attention also can reach across long ranges

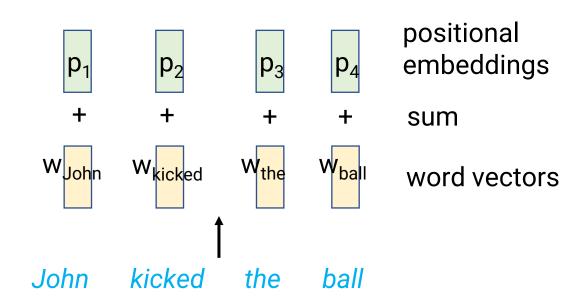
Transformer overview



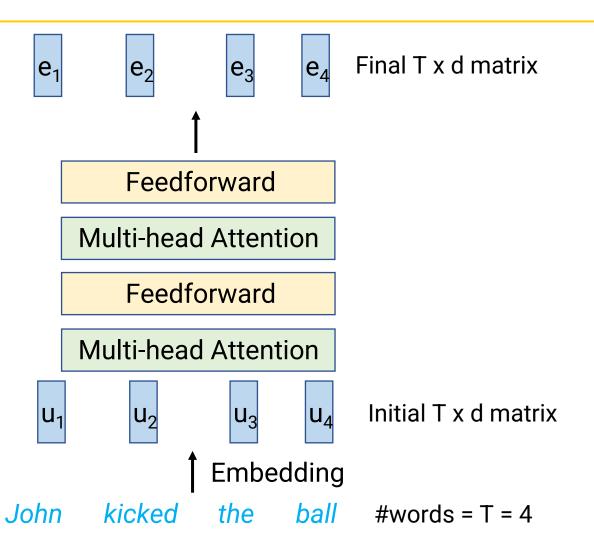
- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
 - Both attention and feedforward layers are order invariant
 - Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
 - Learn a different vector for each index
 - Gets added to word vector at that index

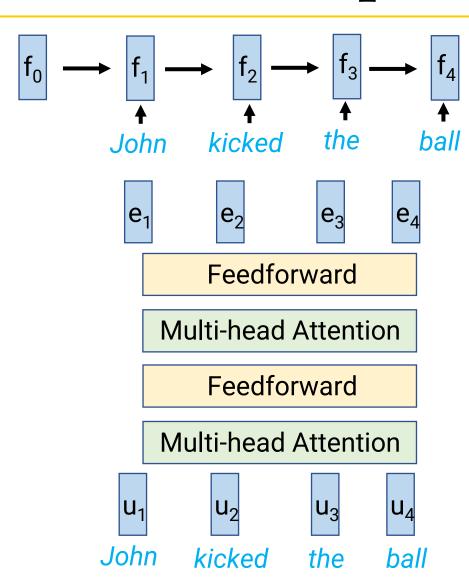


Transformer overview



- How does a Transformer "work"?
- Input layer: Specify each word & its position in the sequence
- Multi-headed attention layers: For each word, retrieve information about related words, incorporate into the word's representation
- Feedforward layers: Do additional non-linear processing of the information we have about the each word (independently)

Runtime comparison



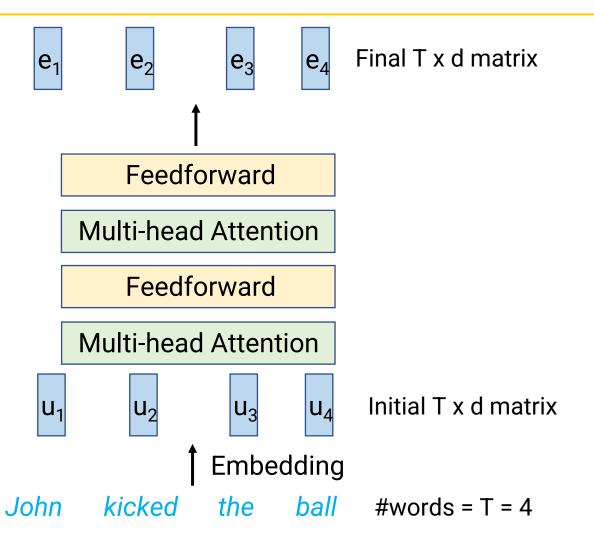
• RNNs

- Linear in sequence length
- But all operations have to happen in series

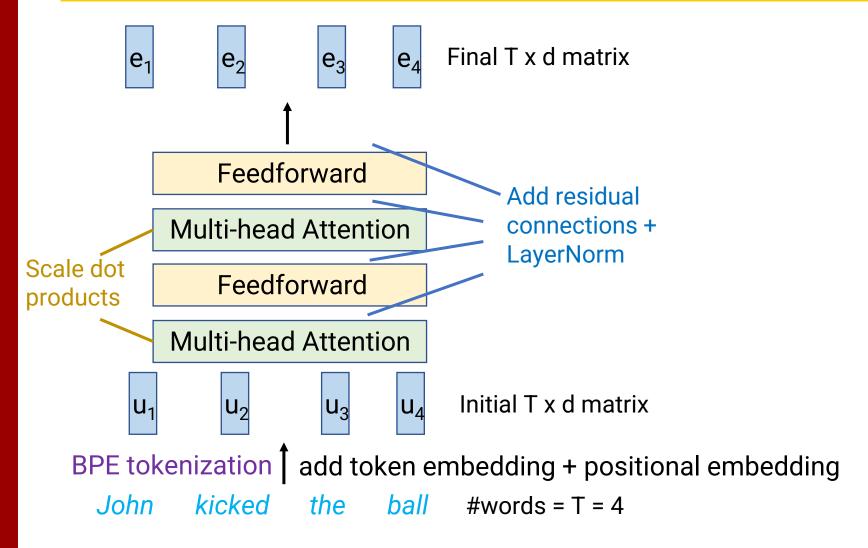
Transformers

- Quadratic in sequence length (T x T matrices)
- But can be parallelized (big matrix multiplication)

Transformer overview



- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...



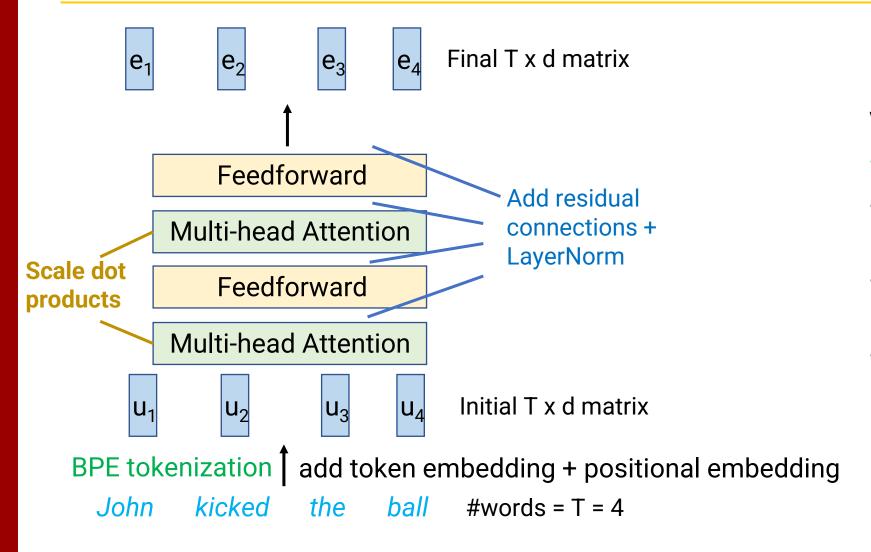
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
 - Names? Typos?
 - Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
 - Common words = 1 token
 - Rare words = multiple tokens

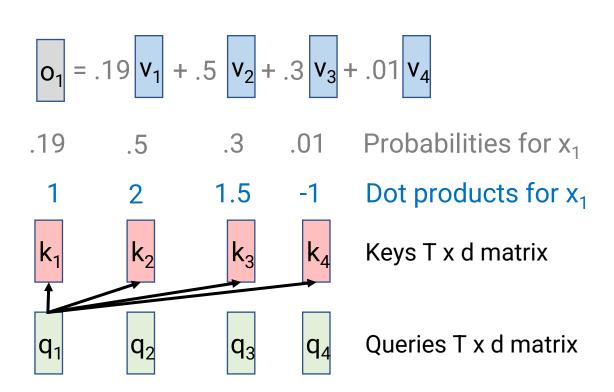
Aragorn told Frodo to mind Lothlorien 6 words

'Ar', 'ag', 'orn', 'told', 'Fro', 'do', 12 subword 'to', 'mind', 'L', 'oth', 'lor', 'ien' tokens



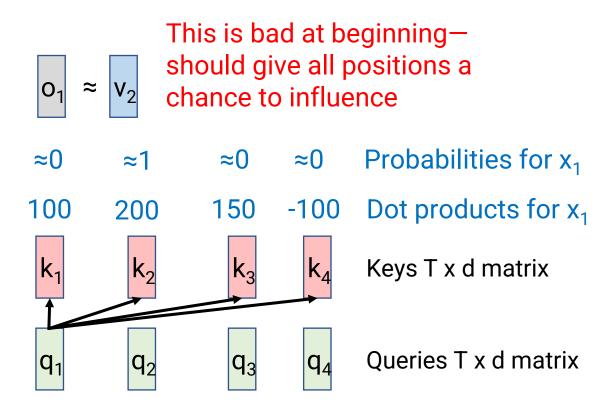
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Scaled dot product attention

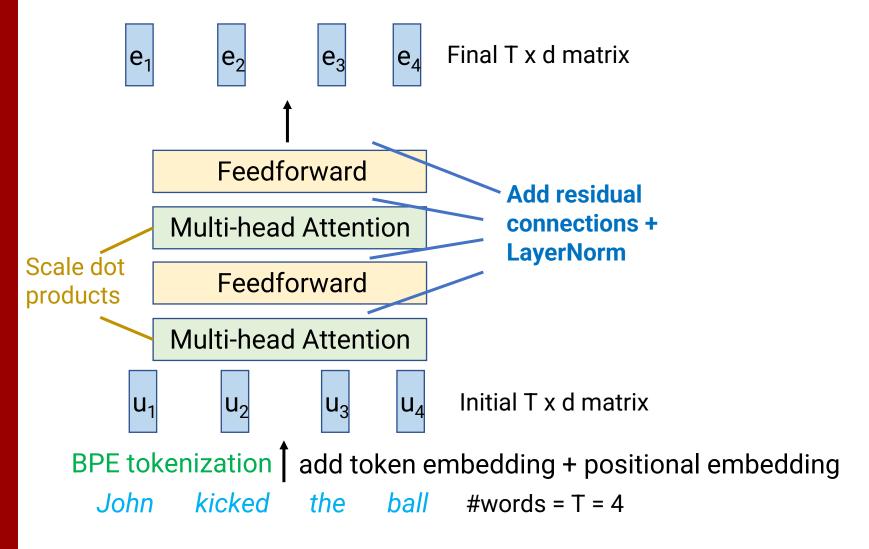


- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Scaled dot product attention



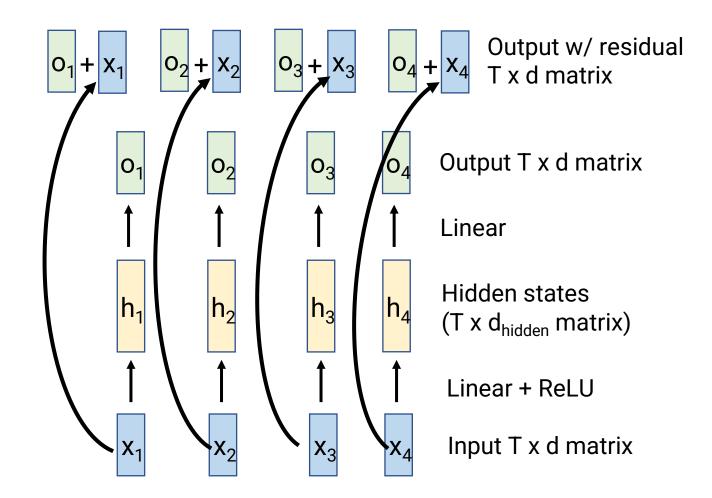
- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning



- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Residual Connections

- Feedforward and multi-headed attention layers
 - Take in T x d matrix X
 - Output T x d matrix O
- We add a "residual" connection: we actually use X + O as output
 - Makes it easy to copy information from input to output
 - Think of O as how much we change the previous value
- Same idea also common in CNNs!
 - Reduces vanishing gradient issues



Layer Normalization ("LayerNorm")

- LayerNorm is a layer/building block that "normalizes" a vector
- Input x: vector of size d

Parameters

- Output y: vector of size d
- Formula: $\mu = \frac{1}{d} \sum_{i=1}^d x_i$ Mean of components of x

$$\sigma^2 = \frac{1}{d} \sum_{i=1}^{d} (x_i - \mu)^2$$
 Variance of components of x $\sigma^2 = \frac{1}{4} * (0^2 + 100^2 + 0^2 + 100^2) = 5000$

$$y = a \cdot \left(\frac{x - \mu}{\sqrt{\sigma^2 + \varepsilon}} \right) + b$$

- $y=a\cdot \overbrace{\sqrt{\sigma^2+\varepsilon}}^{x-\mu}+b$ 1. Normalize: Subtract by mean, divide by standard deviation 2. Rescale: Multiply by a, add b

$$x = [100, 200, 100, 0]$$

$$\mu = 100$$

Normalized
$$x =$$

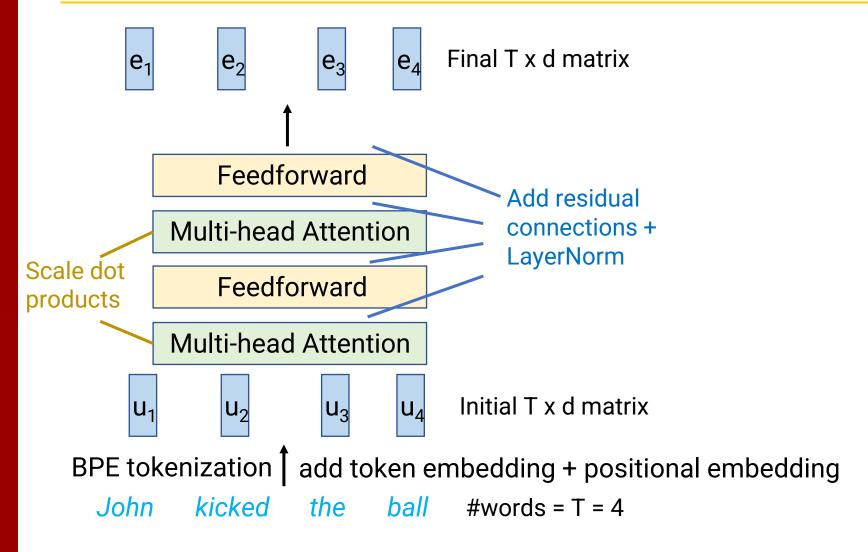
[0, 100, 0, -100] /
$$\sqrt{5000}$$
 = [0, 1.4, 0, -1.4] (If $\epsilon \approx 0$)

Output =
$$[b, 1.4a+b, b, -1.4a+b]$$

- a & b are scalar parameters, let model learn good scale/shift
 - Without these, all vectors forced to have mean=0, variance=1
- ε is hyperparameter: Some small number to prevent division by 0

LayerNorm in Transformers

- After every feedforward & multi-headed attention layer, we also add Layer Normalization
 - Input: vectors x₁, ..., x_T
 - Compute μ and σ^2 for each vector
 - Normalize each vector
 - Use the same a and b to rescale each vector
- Is applied after residual connection
 - Output of each layer is LayerNorm(x + Layer(x))
- Why? Stabilizes optimization by avoiding very large values



- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Conclusion: Transformers

- "Attention is all you need"
 - Get rid of recurrent connections
 - Instead, all "communication" between words in sequence is handled by attention
 - Have multiple attention "heads" to learn different types of relationships between words
- Most famous modern language models (e.g., ChatGPT) are Transformers!
 - Next time: Transformers as Decoders, Pre-training
 - Later: Transformers + Reinforcement Learning = ChatGPT