
Transformers, Part I

Robin Jia
USC CSCI 467, Spring 2024

March 19, 2024

Announcements

• Midterm grades released

• Project midterm report due Tuesday, March 26
• Main goal: Obtain needed data & have a full pipeline that processes data, trains a model,

and gets some results
• Compare this model with some baseline (either an even simpler model or a non-learning

method)
• Results may or may not be “good”—just a starting point for final model
• Analyze errors and identify possible sources of improvement
• Full description on course website (click on “Final Project Information”)
• If any questions/issues, reach out to your CP

• HW3 releasing soon, due April 4

2

Common Exam Mistakes: 1(c)

• Answering “Neural Network” got 1 / 2 points
• Yes, neural networks can approximate any function

• But they will never actually compute the product of 3 features

• Better answer is to directly multiply the features together

3

Common Exam Mistakes: 1(c)

• Partially correct answer: Use a kernelized method with a
Φ(x) function that has certain properties
• But to run a kernel method, you have to specify the kernel

function k(x, z)

• To use kernel trick, must show k(x, z) is efficient to compute

• A kernelized method never directly uses Φ, that’s why it has
different efficiency properties

4

Common Exam Mistakes: 5(b)

• Incomplete answer: Bad because it is not differentiable everywhere
• Hinge loss is also not differentiable everywhere, but SVM works

• Real problem: This function’s derivative is 0 everywhere it exists

• This means that all gradients are 0, so gradient descent does nothing

5

Review: Deep Learning
• Task: Specifies the inputs & outputs

• Sentiment classification: Input = sentence,
Output = positive/negative

• Object recognition: Input = picture, Output =
type of object

• Model: We combine building blocks that can
transform the input to the output
• With parameters: Linear layer, Convolutional

layer, RNN layer, Word vector layer
• No parameters: sigmoid/tanh/ReLU, max

pooling, addition,

• Training: Minimize loss of our model’s
outputs compared to the true outputs by
updating parameters of all layers (that have
them)
• Do this by gradient descent
• Backpropagation computes gradient w.r.t.

every parameter
6

N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Input words w1, …, wT

w1 w2 w3 w4 w5

h1 h2 h3 h4 h5

Word Vector Layer
Params: vw for each w in vocab

Linear Layer 2
Params: w2, b2

ReLU Layer

Linear Layer 1
Params: w1, b1

RNN Layer
Params: Wh, Wx, b, h0

Review: RNNs

• At each timestep t, run neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0,

word vectors 7

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear function of
prev. hidden state

Linear function of
current word vector

Same W’s & b for each timestep

question

Review: Encoder vs. Decoder

• First run an RNN over
text

• Use the final hidden
state as an “encoding”
of the entire sequence

• Use this as features,
train a classifier on top

8

…

To be or question

h1
h2

h3 hTh0

Classification
layer goes here

Output

Encoder model: Converts sentence to vector “encoding”

Final
“encoding”
of sentence

Review: Encoder vs. Decoder

Decoder model: Generates words one at a time

9

…

To
w1

be
w2

question
wT

h0
h1 h2 hT

P(w1) P(w2 | To) P(w3 | To be) P(wT+1 |To be…question)

Softmax
Regression-style
classification over
Vocabulary + [END]

Desired output: To be or [END]

RNNs vs. Transformers (Encoders)

10

RNNs Transformers

• Input = sequence
of vectors, representing

words
• Output = sequence of

hidden state vectors, one
for each input word

• Process a
sentence one word at a

time
• Each “step” of

computation is reading
one more word (time

dimension)
• Final encoding of
sentence = final word’s

hidden state

• Process all words
of the sentence at the
same time (in parallel)
• Each “step” of

computation is applying
one more layer (depth
dimension; more like a

CNN)
• Final encoding of
sentence = any word’s
hidden state from the

final layer

Review: Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

11

Review: Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

• Syntactic dependencies

12

He ate steak with ketchup

He ate steak with a fork

Goes with “steak”

Modifies “ate”

Review: Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

13

Review: Attention
• Compute similarity between

decoder hidden state and each
encoder hidden state
• E.g., dot product, if same size

• Normalize similarities to
probability distribution with
softmax

• Output: “Context” vector c =
weighted average of encoder
states based on the
probabilities
• No new parameters (like

ReLU/max pool)

14

I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c

Dot Product

Review: Attention as Retrieval

• Consider a search engine:
• Queries: What you are

looking for
• E.g., What you type into

Google search

• Keys: Summary of what
information is there
• E.g., Text from each webpage

• Values: What to give the user
• E.g., The URL of each

webpage

15

Review: Attention

(8) Attention Layer

• Inputs (all vectors of length d):
• Query vector q
• Key vectors k1, …, kT

• Value vectors v1, …, vT

• Output (also vector of length d)
• Dot product q with each key vector kt to get score st:

• Softmax to get probability distribution p1, …, pT:

• Return weighted average of value vectors:

16

q k1, …, kT v1, …, vT

Output vector

Attention Layer
No parameters

How well does the
query match each key?

Dominated by the values corresponding
to the “best-matching” keys

Today: Can we use Attention for Everything?

• Modeling relationships between words
• Translation alignment
• Syntactic dependencies
• Coreference relationships

• Long range dependencies
• E.g., consistency of characters in a novel

• Attention captures relationships &
doesn’t care about “distance,” unlike
RNNs

• Let’s replace RNN’s with an architecture
based solely on MLP’s + attention

17

Today: The Transformer Architecture

• Input: Sequence of words

• Output: Sequence of hidden state vectors, one
per word

• Same “type signature” as RNN

• Motivation
• Process all words at the same time, don’t do

explicit sequential processing
• Let attention figure out which words are relevant

to each other
• Whereas RNN assumes sequence order is what

matters

• “Attention is all you need”

18

John kicked the ball

Transformer

e1 e2 e3 e4

Transformer overview

• One transformer consists of
• Initial embeddings for each word

of size d
• Let T =#words, so initially we have

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

19

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Transformer overview

• One transformer consists of
• Initial embeddings for each word

of size d
• Let T =#words, so initially we have

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

20

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Feedforward layer

• Input: T x d matrix

• Output: Another T x d matrix

• Apply the same MLP separately
to each d-dimensional vector
• Linear layer from d to dhidden

• ReLU (or other nonlinearity)
• Linear layer from dhidden to d

• Note: No information moves
between tokens here

21

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Transformer overview

• One transformer consists of
• Initial embeddings for each word

of size d
• Let T =#words, so initially we have

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

22

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Modifying Attention

• What is a multi-headed
attention layer???

• Similar to attention we’ve
seen, but need to make 3
changes…
• Self-attention (no separate

encoder & decoder)
• Separate queries, keys, and

values
• Multi-headed

23

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product

Change #1: Self-Attention

• Previously: Decoder state
looks for relevant encoder
states

• Self-attention: Each encoder
state now looks for relevant
(other) encoder states

• Why? Build better
representation for word in
context by capturing
relationships to other words

24

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product

Change #1: Self-attention

• Take x1 and dot product it with all T
inputs (including itself)

• Apply softmax to convert to probability
distribution

• Compute output o1 as weighted sum of
inputs

25

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Change #1: Self-attention

• Take x1 and dot product it with all T
inputs (including itself)

• Apply softmax to convert to probability
distribution

• Compute output o1 as weighted sum of
inputs

• Repeat for t=2, 3, …, T

• Replacement for recurrence
• RNN only allows information to flow

linearly along sequence

• Now, information can flow from any index
to any other index, as determined by
attention

26

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1 o2 o3 o4 Output T x d matrix

Change #2: Separate queries, keys, and values

• Recall: Attention uses vectors in
three different ways
• As “query” for current index
• As “keys” to match with query
• As “values” when computing output

• Idea: Use separate vectors for each
usage
• What each index “looks for” different

from what it “matches with”
• What you store in output different

from what you “look for”/“match with”

27

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Values

Query Keys

Dot products for x1

Probabilities for x1

+ .5 + .3 + .01= .19

Change #2: Separate queries, keys, and values

• Apply 3 separate linear layers to each of x1,
…, xT to get

• Queries [q1, …, qT], each qt = WQ * xt

• Keys [k1, …, kT], each kt = WK * xt

• Values [v1, …, vT], each vt = WV * xt

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d to
dimension dattn

• Dot product q1 with [k1, …, kT]

• Apply softmax to get probability
distribution

• Compute o1 as weighted sum of [v1, …, vT]

• Repeat for t = 2, …, T

28

k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix

+ .5 + .3 + .01= .19

Matrix form
• Apply 3 separate linear layers to input

matrix X (T x din) to get
• Query matrix Q = (WQ * XT)T

• Keys K = (WK * XT)T

• Values V = (WV * XT)T

• Note: This adds parameters WQ, WK, WV

• Compute Q x KT (T x T matrix)
• Each entry is dot product of one query

vector with one key vector

• Normalize each row with softmax to get
matrix of probabilities P

• Output = P x V

29

k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix

• Quadratic in T

• All you need is fast matrix multiplication

• All indices run in parallel

Change #3: Making it Multi-headed

• Instead of doing
attention once, have n
different “heads”
• Each has its own

parameters maps to
dimension dattn = d/n

• Concatenate at end to
get output of size T x d

30

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Change #3: Making it Multi-headed

• Instead of doing attention
once, have n different
“heads”
• Each has its own parameters

maps to dimension dattn = d/n
• Concatenate at end to get

output of size T x d

• Why? Different heads can
capture different
relationships between words

31

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Concatenate

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

• Input: List of vectors x1, …, xT, each of size d
• Equivalent to a T x d matrix

• Output: List of vectors h1, …, ht, each of size d
• Equivalent to another T x d matrix

• Formula: For each head i:
• Compute Q, K, V matrices using Wi

Q, Wi
K, Wi

V

• Compute self attention output using Q, K, V to yield
T x dattn matrix

• Finally, concatenate results for all heads

• Parameters:
• For each head i, parameter matrices Wi

Q, Wi
K, Wi

V of
size dattn x d

• (# of heads n is hyperparameter, dattn = d/n)

• In pytorch: nn.MultiheadAttention()
32

Input x1, …, xT, each shape d

Multi-headed attention layer
Params: Wi

Q, Wi
K, Wi

V

for i = 1, …, n

Output h1, …, hT, each shape d

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

What do attention heads learn?

• This attention head seems to go
from a pronoun to its antecedent
(who the pronoun refers to)

• Other heads may do more boring
things, like point to the
previous/next word
• In this way, can do RNN-like things as

needed
• But attention also can reach across

long ranges

33

Transformer overview

• One transformer consists of
• Initial embeddings for each word

of size d
• Let T =#words, so initially we have

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer
• Feedforward layer
• Both take in T x d matrix and

output a new T x d matrix

• Plus some bells and whistles…

34

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Embedding layer

• As before, learn a vector for each
word in vocabulary

• Is this enough?
• Both attention and feedforward layers

are order invariant

• Need the initial embeddings to also
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index

35

John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4

+ + + +

word vectors

positional
embeddings

sum

Transformer overview

• How does a Transformer “work”?

• Input layer: Specify each word & its
position in the sequence

• Multi-headed attention layers: For
each word, retrieve information
about related words, incorporate into
the word’s representation

• Feedforward layers: Do additional
non-linear processing of the
information we have about the each
word (independently)

36

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in
series

• Transformers
• Quadratic in sequence length (T x T

matrices)

• But can be parallelized (big matrix
multiplication)

37

John kicked the

f1 f2
f3f0

kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John

ball

f4

Transformer overview

• One transformer consists of
• Initial embeddings for each word

of size d
• Let T =#words, so initially we have

a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer
• Feedforward layer
• Both take in T x d matrix and

output a new T x d matrix

• Plus some bells and whistles…

38

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

The Full Transformer

Full Transformer also
includes bells and
whistles:

• Byte pair encoding

• Scaled dot product
attention

• Residual connections
between layers

• LayerNorm

39

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Byte Pair Encoding

• Normal word vectors have
a problem: How to deal
with super rare words?
• Names? Typos?

• Vocabulary can’t contain
literally every possible word…

• Solution: Tokenize string
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens

40

Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’,
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword
tokens

The Full Transformer

Full Transformer also
includes bells and
whistles:

• Byte pair encoding

• Scaled dot product
attention

• Residual connections
between layers

• LayerNorm

41

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1 with
[k1, …, kT]”

• Actually, you take dot product and
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down

encourages more even attention at
beginning

42

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

≈

Scaled dot product attention

• Earlier I said, “Dot product q1 with
[k1, …, kT]”

• Actually, you take dot product and
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down

encourages more even attention at
beginning

43

k1 k2 k3 k4 Keys T x d matrix

100 200 150 -100

≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a
chance to influence

The Full Transformer

Full Transformer also
includes bells and
whistles:

• Byte pair encoding

• Scaled dot product
attention

• Residual connections
between layers

• LayerNorm

44

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Residual Connections

• Feedforward and multi-headed
attention layers
• Take in T x d matrix X

• Output T x d matrix O

• We add a “residual” connection:
we actually use X + O as output
• Makes it easy to copy information

from input to output

• Think of O as how much we
change the previous value

• Same idea also common in
CNNs!
• Reduces vanishing gradient issues

45

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Output w/ residual
T x d matrix

o1 o2 o3 o4x1 x2 x3 x4+ + + +

Layer Normalization (“LayerNorm”)

• LayerNorm is a layer/building block that “normalizes” a vector

• Input x: vector of size d

• Output y: vector of size d

• Formula:

• Parameters
• a & b are scalar parameters, let model learn good scale/shift

• Without these, all vectors forced to have mean=0, variance=1

• ɛ is hyperparameter: Some small number to prevent division by 0

46

Mean of components of x

Variance of components of x

1. Normalize: Subtract by mean,
divide by standard deviation

2. Rescale: Multiply by a, add b

x = [100, 200, 100, 0]

μ = 100

σ2 = ¼ * (02 + 1002 + 02 + 1002) = 5000

Normalized x =

[0, 100, 0, -100] / 5000

= [0, 1.4, 0, -1.4] (If ɛ ≈ 0)

Output = [b, 1.4a+b, b, -1.4a+b]

Normalized x

LayerNorm in Transformers

• After every feedforward & multi-headed attention layer, we also add
Layer Normalization
• Input: vectors x1, …, xT

• Compute μ and σ2 for each vector

• Normalize each vector

• Use the same a and b to rescale each vector

• Is applied after residual connection
• Output of each layer is

• Why? Stabilizes optimization by avoiding very large values

47

The Full Transformer

Full Transformer also
includes bells and
whistles:

• Byte pair encoding

• Scaled dot product
attention

• Residual connections
between layers

• LayerNorm

48

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections

• Instead, all “communication” between words in sequence is handled by
attention

• Have multiple attention “heads” to learn different types of relationships
between words

• Most famous modern language models (e.g., ChatGPT) are
Transformers!
• Next time: Transformers as Decoders, Pre-training

• Later: Transformers + Reinforcement Learning = ChatGPT

49

	Default Section
	Slide 1: Transformers, Part I
	Slide 2: Announcements
	Slide 3: Common Exam Mistakes: 1(c)
	Slide 4: Common Exam Mistakes: 1(c)
	Slide 5: Common Exam Mistakes: 5(b)
	Slide 6: Review: Deep Learning
	Slide 7: Review: RNNs
	Slide 8: Review: Encoder vs. Decoder
	Slide 9: Review: Encoder vs. Decoder
	Slide 10: RNNs vs. Transformers (Encoders)
	Slide 11: Review: Challenges of modeling sequences
	Slide 12: Review: Challenges of modeling sequences
	Slide 13: Review: Challenges of modeling sequences
	Slide 14: Review: Attention
	Slide 15: Review: Attention as Retrieval
	Slide 16: Review: Attention
	Slide 17: Today: Can we use Attention for Everything?
	Slide 18: Today: The Transformer Architecture
	Slide 19: Transformer overview
	Slide 20: Transformer overview
	Slide 21: Feedforward layer
	Slide 22: Transformer overview
	Slide 23: Modifying Attention
	Slide 24: Change #1: Self-Attention
	Slide 25: Change #1: Self-attention
	Slide 26: Change #1: Self-attention
	Slide 27: Change #2: Separate queries, keys, and values
	Slide 28: Change #2: Separate queries, keys, and values
	Slide 29: Matrix form
	Slide 30: Change #3: Making it Multi-headed
	Slide 31: Change #3: Making it Multi-headed
	Slide 32: The Multi-headed Attention building block
	Slide 33: What do attention heads learn?
	Slide 34: Transformer overview
	Slide 35: Embedding layer
	Slide 36: Transformer overview
	Slide 37: Runtime comparison
	Slide 38: Transformer overview
	Slide 39: The Full Transformer
	Slide 40: Byte Pair Encoding
	Slide 41: The Full Transformer
	Slide 42: Scaled dot product attention
	Slide 43: Scaled dot product attention
	Slide 44: The Full Transformer
	Slide 45: Residual Connections
	Slide 46: Layer Normalization (“LayerNorm”)
	Slide 47: LayerNorm in Transformers
	Slide 48: The Full Transformer
	Slide 49: Conclusion: Transformers

