Deep Learning for Language: Recurrent Neural Networks

Robin Jia

USC CSCI 467, Spring 2024 February 27, 2024

Peculiarities of language data

- Peculiarity #1: Text is not a numerical format
 - Feature vector = list of numbers
 - Image = 3xWxH grid of pixel brightness values
 - Text = sequence of words, not numbers
- Peculiarity #2: Text is variable sized
 - Feature vectors are always the same size for different examples
 - Images can be cropped/rescaled to be the same size for all examples
 - Text: Different examples have different # of words

Feeding Words to a Neural Network

- Peculiarity #1: Words are not numerical
- Solution: Learn word vectors, feed word vector of each word to model!
- Original input: T words
- Vector input: T vectors, each of size d

Text input:	A	Z 00
Vector input:	-0.4	2.1

A	ZO	o e	lephant
-0.4	2.	1	2.1
1.4	-1.	4	-1.3
-1.2	3.2	2	0.3

Word w	Vector v _w
А	[-0.4, 1.4, -1.2]
Aardvark	[2.2, -1.8, 0.6]
Airport	[0.7, 0.3, 3.1]
•••	
Elephant	[2.1, -1.3, 0.3]
•••	
Zoo	[2.1, -1.4, 3.2]

RNN "Building Blocks"

(6) Word Vector Layer

- Input w: A word (from our vocabulary)
 - Can also input list of words
- Output: A vector of length d
 - If input is many words, output is list of vectors for each word
- Formula: Return word_vecs[w]
- Parameters:
 - For each word w in vocabulary, there is a word vector parameter $\boldsymbol{v}_{\boldsymbol{w}}$ of shape d
 - Think of this as a dictionary called word_vecs, where the keys are words & values are learned parameter vectors
 - Can initialize using word2vec, or randomly
 - Train them further with gradient descent to help final task
- In pytorch: nn.Embedding()

Outline

- Recurrent Neural Networks (RNNs) for sequential data
- Language modeling and Long-range dependencies
- Vanishing gradients and Gated RNNs

Handling variable length

- Peculiarity #2: Documents have different numbers of words
 - Example 1: Amazing!
 - Example 2: There are many issues with this movie, such as...
- Problem: In previous models, number of parameters depends on size of inputs
- Challenge: How can we use the same set of model parameters to handle inputs of any size?

Recurrent Neural Networks (RNNs)

same for each step

A "Vanilla"/"Elman" RNN

Learn linear function of both inputs, add bias, apply non-linearity

Vector for current word x_t

• Parameters: Recurrence params (W_h, W_x, b) , initial hidden state h_0 , word vectors

RNN "Building Blocks"

(7) RNN Layer

- Input: List of vectors x₁, ..., x_T, each of size d_{in}
 - E.g., x_t is word vector for t-th word in sentence
 - Equivalent to a T x d_{in} matrix
- Output: List of vectors h₁, ..., h_t, each of size d_{out}
 - d_{out}: Dimension of hidden state
 - Equivalent to a T x d_{out} matrix
- Formula (Elman RNN): $h_t = \tanh (W_h h_{t-1} + W_x x_t + b)$
- Parameters:
 - W_h: Matrix of shape (d_{out}, d_{out})
 - W_x: Matrix of shape (d_{out}, d_{in})
 - b: Vector of shape (d_{out},)
 - h₀: Vector of shape (d_{out},)
- In pytorch: nn.RNN(), etc.

Output h₁, ..., h_T, each shape d_{out}

Input x_1 , ..., x_T , each shape d_{in}

Recurrent Neural Network Diagrams

- Can also visualize RNN's with a diagram that has a cycle ("recurrence")
 - RNN layer is just a neural network that takes in two vectors and produces a third vector
 - New vector gets fed back in next timestep
 - Previous slide is the "unrolled" diagram

Recurrence vs. Depth

- Deep networks (i.e., adding more layers)
 - Computation graph becomes longer
 - Number of parameters also grows; each step uses new parameters
- Recurrent neural networks
 - Computation graph becomes longer
 - Number of parameters **fixed**; each step uses **same parameters**

Recurrence and Depth

- You can have multiple layers of recurrence too!
 - Left-to-right axis ("time dimension"): Length is size of input, same parameters in each step
 - Top-to-bottom axis
 ("depth dimension"):
 Length is depth of
 network, different
 parameters in each row

Training an RNN

- Basic usage of RNN: Make prediction based on final hidden state
- Same recipe: Backpropagation to compute gradients + gradient descent
- Must backpropagate through whole computation graph
 - "Backpropagation through time"

Building an RNN encoder model

Neural Network Model

- A generic RNN architecture
 - Map each word to a vector
 - Feed word vectors to RNN to generate list of hidden states
 - Feed final hidden state to MLP to make final prediction (e.g., document classification)
- Basic steps are still all the same
 - Backpropagation still works
- Gradient descent needed to update all parameters

Outline

- Recurrent Neural Networks (RNNs) for sequential data
- Language modeling and Long-range dependencies
- Vanishing gradients and Gated RNNs

Autoregressive Language Modeling

- At each step, probabilistically predict the next word given current hidden state
- One step's desired output is the next step's input ("autoregressive")
- To mark end of sequence, model should predict the [END] token
- Called a "Decoder": Looks at the hidden state and "decodes" next word

Autoregressive Language Model Training

- Training example: "Convolutional neural networks are good for image classification"
- Want to maximize P("Convolutional neural networks are good for image classification")
- MLE: Take log and decompose by chain rule:

```
log P("Convolutional")
+ log P("neural" | "Convolutional")
+ log P("networks" | "Convolutional neural")
+ log P("are" | "Convolutional neural networks") + ...
```

- Decomposes into a bunch of **next-word-classification** problems
- Backpropagation + gradient descent to minimize loss
 - Update RNN parameters
 - Update word vectors
 - Update final layer classifier over vocabulary

Generating text with LM's

- Test time: Given some prefix, "autocomplete" the rest of the sentence
- First, feed prefix as input to model
- · At each timestep, choose next word based on model's predictions
 - · Greedy: Choose the most likely word
 - Sampling: Sample from the model's probability distribution over words
- Feed the model's generated word back as the next word, stop if [END]

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

```
The keys to the cabinet ___ (on the table)

plural singular
```

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

The keys to the cabinet are (on the table)
plural singular

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

The keys to the cabinet by the door are (on the table)

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

The keys to the cabinet by the door on the left are (on the table)

- "Coreference": When two words refer to the same underlying person/place/thing
 - Pronouns typically corefer to an antecedent (something mentioned earlier in the text)
- Coreference relationships can even span multiple sentences

Even longer-range dependencies

- Imagine trying to generate a novel...
 - Same set of characters
 - Characters have to behave in consistent ways
 - Sensible ordering of events

Announcements

- Project proposal grades released
 - Check piazza for which CP is assigned to your project
 - Can reach out to CP's to schedule time to discuss project
- HW2 due this Thursday
- Section Friday: Midterm preparation
- Midterm exam: Thursday March 7, SLH 100
 - Practice exams released on website
 - Please write in pen

Outline

- Recurrent Neural Networks (RNNs) for sequential data
- Language modeling and Long-range dependencies
- Vanishing gradients and Gated RNNs

Backpropagation through time, revisited

- Model needs to know that the correct word is are because of the word keys!
- Let's backpropagate the loss on generating are to the word vector parameters for keys
 - · For simplicity, let's assume all the hidden states are just 1-dimensional
 - Step 1: Compute δLoss/δ(h_T)
 - Step 2: Compute $\delta Loss/\delta(h_{T-1}) = \delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1})$
 - Step 3: Compute $\delta Loss/\delta(h_{T-2}) = \delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1}) * \delta(h_{T-1})/\delta(h_{T-2})$
 - ...
 - Gradient through "keys" hidden state: $\delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1}) * \delta(h_{T-1})/\delta(h_{T-2}) * ... * \delta(h_3)/\delta(h_2)$
 - Gradient through "keys" word vector: $\delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1}) * \delta(h_{T-1})/\delta(h_{T-2}) * ... * \delta(h_3)/\delta(h_2) * \delta(h_2)/\delta(x_2)$

The Vanishing Gradient Problem

- Gradient through "keys" word vector: $\delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1}) * \delta(h_{T-1})/\delta(h_{T-2}) * ... *$ $\delta(h_3)/\delta(h_2) * \delta(h_2)/\delta(x_2)$
 - What is each individual $\delta(h_t)/\delta(h_{t-1})$ term?
 - $\frac{\delta h_t}{\delta h_{t-1}} = \tanh' \left(W_h h_{t-1} + W_x x_t + b \right) \cdot W_h$ • Elman network: $h_t = \tanh (W_h h_{t-1} + W_x x_t + b)$,
 - After t timesteps, have a factor of $(W_h)^t$ (to the t-th power)!
 - If W_h << 1, this quickly becomes 0 ("vanishes")

for this word The

Focus on loss

Ignore for now

The same

parameter

over and over!

The Vanishing Gradient Problem

- Vanishing Gradients: Updates to one word/hidden state not influenced by loss on words many steps in the future
 - Illustrated only for 1-dimensional hidden states, but same thing happens when states are vectors/parameters are matrices
- Result: Hard for model to learn long-range dependencies!

Vanishing and Exploding

- Vanishing gradient occurs because
 - Gradient w.r.t. words t steps in the past has $(W_h)^t$
 - And when $W_h \ll 1$ (e.g., at initialization time)
- What if $W_h > 1$?
 - Gradients get bigger as you go backwards in time: Exploding gradients!
 - Vanishing gradients more usual, but explosion can happen too
- Quick fix: Gradient Clipping
 - If gradient is super large, "clip" it to some maximum amount
 - Rescale the total vector to some maximum norm.
 - Clip each entry to be within some minimum/maximum value
- Outside of RNNs, vanishing/exploding gradients can happen whenever you have long computation graphs with lots of multiplications

Avoiding Vanishing Gradients

Where did we go wrong?

$$h_t = \tanh\left(W_h h_{t-1} + W_x x_t + b\right),\,$$

Multiplicative

relationship between previous state and next state

$$\frac{\delta h_t}{\delta h_{t-1}} = \tanh' \left(W_h h_{t-1} + W_x x_t + b \right) \cdot W_h$$

Leads to repeated multiplication by W_h

Avoiding Vanishing Gradients

- Extreme idea: A purely additive relationship
 - Pro: No vanishing gradients
 - Pro: Old hidden state carried through to all future times
 - Con: May be good to "forget" irrelevant information about old states

$$h_t = h_{t-1} + g(h_{t-1}, x_t),$$
Additive relationship

$$\frac{\delta h_t}{\delta h_{t-1}} = 1 + \frac{\delta}{\delta h_{t-1}} g(h_{t-1}, x_t)$$

Gradients also add, not multiply

Avoiding Vanishing Gradients

- Middle-ground: Gated recurrence relationship
 - Additive component makes gradients add, not multiply = less vanishing gradients
 - Forget gate allows for selectively "forgetting" some neurons within hidden state
 - When forget gate is all 1's, becomes the purely additive model (no vanishing)

Gated Recurrent Units (GRUs)

- One type of gated RNN
 - Here z is the "forget gate" vector
 - Where $z_i = 0$:
 - Forget this neuron
 - Allow updating its value
 - Where $z_i = 1$:
 - Don't forget this neuron
 - Do not allow updating its value
- Parameters: W, U, plus parameters of g
 - (g has a slightly complicated form not shown, has its own parameters)

Long Short-Term Memory (LSTM)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

- Another, more complicated gated RNN
- Commonly used in practice
- What's the idea?
 - Split the hidden state into normal hidden state h_t and "cell" state c_t
 - Cell state uses gated recurrence
 - Hidden state is gated function of cell state

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character
- This neuron seems to detect whether we're inside a URL

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character
- This neuron fires only inside a Markdown [[link]] (so it knows when to close the square brackets?)

Conclusion

- Deep Learning for Language must deal with possibly long inputs
- RNNs handle arbitrarily long inputs with fixed number of parameters
- Need to handle long-range dependencies, but hard to learn due to vanishing gradients
- Gated RNNs (GRUs, LSTMs) can reduce vanishing gradient problems