Finishing Computer Vision; Word Vectors & word2vec

Robin Jia USC CSCI 467, Spring 2024

February 22, 2024

Review: Convolutions

-1	2	-1
-1	2	-1
-1	2	-1

Kernel

$$(K=3)$$

3	-1	0	0
5	-2	0	0
3	-1	0	0

Output

$$(5-3+1 \times 6-3+1)$$

=(3 x 4)

Input

 (5×6)

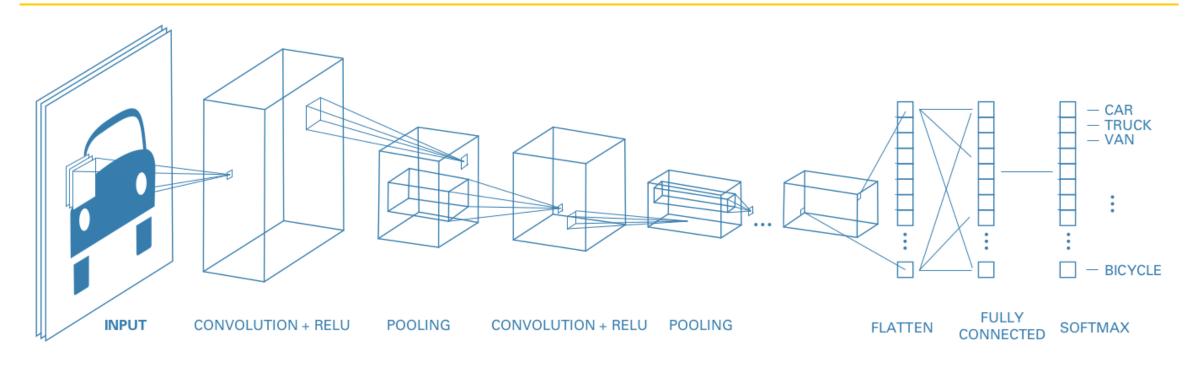
input[1:4,2:5]

(1, 2)-th element

Convolutional Layer

- Extract 1 feature for each window of input by applying kernel
- Output is computed as a dot product (linear operation)
- Local Receptive Field: Each output cell is computed based on a small window of the input image
- Weight Sharing: Same kernel used to process each window of the input image
 - The kernel defines a classifier (e.g., is there a moose here?) that gets applied to every window of the image

Review: Convolutional Neural Networks

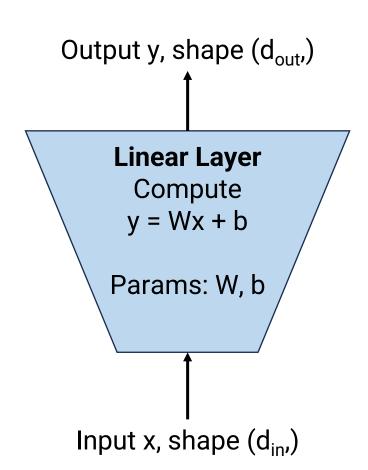


- Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
 - Convolutions at beginning to understand each small window of image
 - Fully connected layer at end to make overall prediction

Review: The Basic "Building Blocks"

(1) Linear Layer

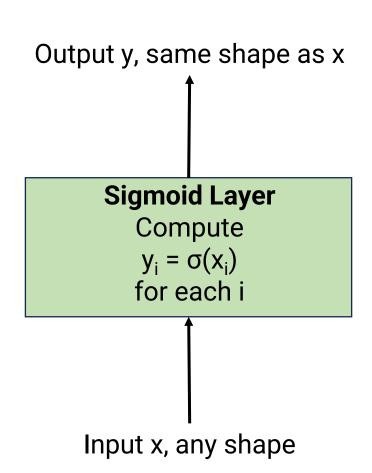
- Input x: Vector of dimension d_{in}
- Output y: Vector of dimension d_{out}
- Formula: y = Wx + b
- Parameters
 - W: d_{out} x d_{in} matrix
 - b: d_{out} vector
- In pytorch: nn.Linear()



Review: The Basic "Building Blocks"

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.



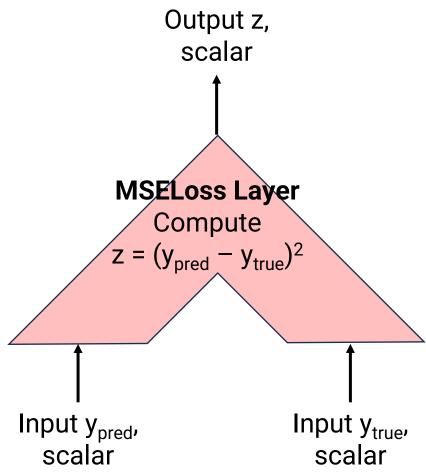
Review: The Basic "Building Blocks"

(3) Loss Layer

- Inputs:
 - y_{pred}: shape depends on task
 - y_{true}: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:

• Squared loss:
$$y_{pred}$$
 is scalar, $z = (y_{pred} - y_{true})^2$
• Softmax regression loss: y_{pred} is vector of length C,
$$z = -\left(y_{pred}[y_{true}] - \log \sum_{i=1}^{C} \exp(y_{pred}[i])\right)$$

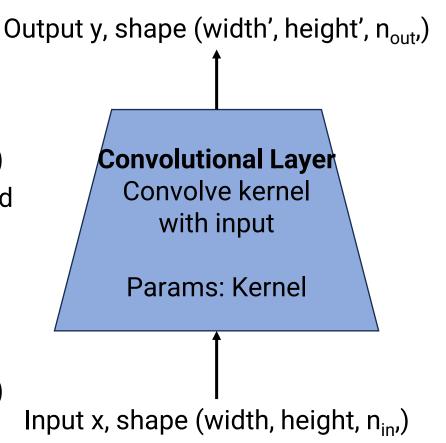
- Parameters: None
- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.



CNN "Building Blocks"

(4) Convolutional Layer

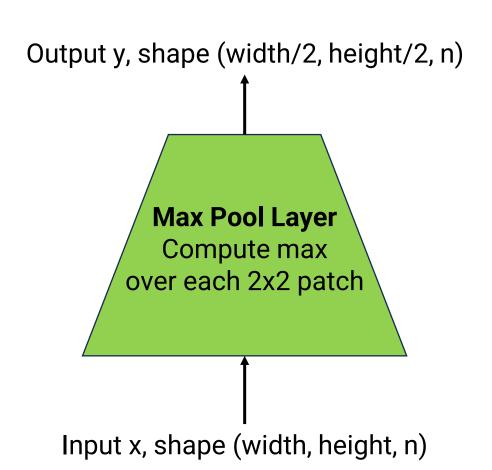
- Input x: Tensor of dimension (width, height, n_{in})
 - n_{in}: Number of input channels (e.g. 3 for RGB images)
- Output y: Tensor of dimension (width', height', n_{out})
 - width', height': New width & height, depends on stride and padding
 - n_{out}: Number of output channels
- Formula: Convolve input with kernel
 - Recall: This is in fact a linear operation
- Parameters: Kernel params of shape (K, K, n_{in}, n_{out})
- In pytorch: nn.Conv2d()



CNN "Building Blocks"

(5) Max Pooling layer

- Input x: Tensor of dimension (width, height, n)
 - n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)
- Formula: In each 2x2 patch, compute max
- Parameters: None
- In pytorch: nn.MaxPool2d()

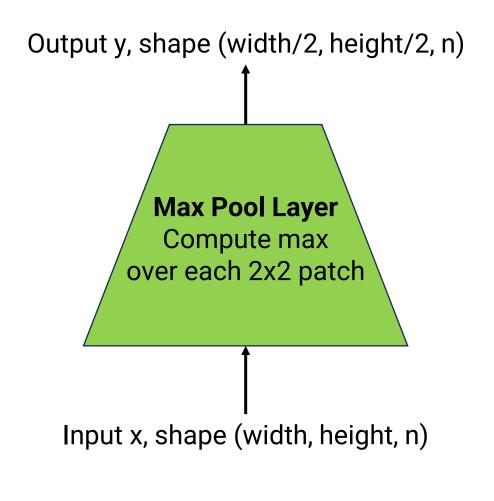


CNN "Building Blocks"

(5) Max Pooling layer

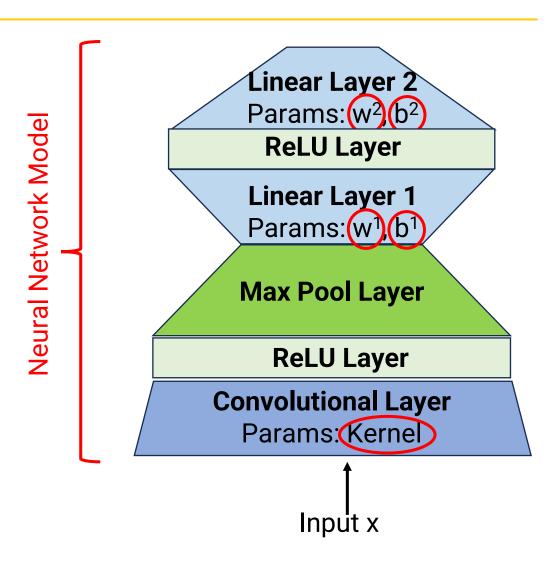
- Input x: Tensor of dimension (width, height, n)
 - n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
110	100	25	10			



Building a CNN Model

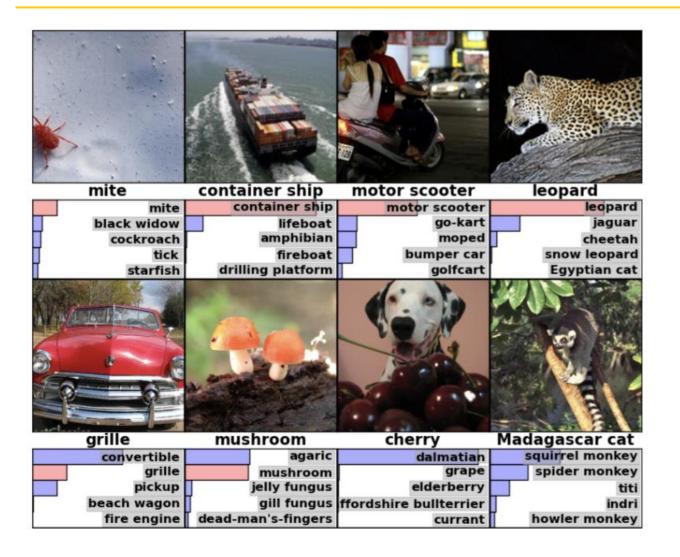
- A generic CNN architecture
 - First use conv + relu + pool to extract features
 - Then use MLP to make final prediction
- Basic steps are still all the same
 - Backpropagation still works
- Gradient descent needed to update all parameters



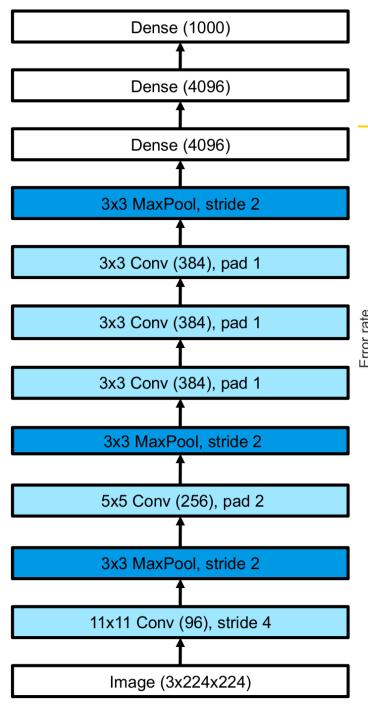
Outline

- Computer vision tasks
- Word vectors
 - What do we want?
 - word2vec
 - Solving analogies
 - Bias in word vectors

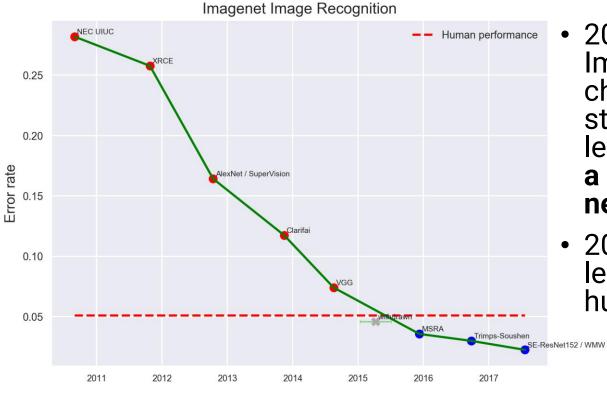
Image Classification



- ImageNet dataset: 14 million images, 1000 labels
- CNNs do very well at these tasks!



Progress on ImageNet



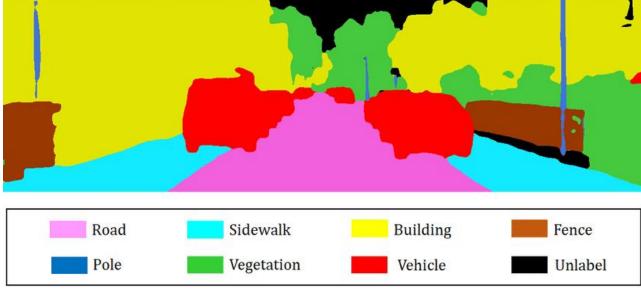
- 2012: AlexNet wins ImageNet challenge, marks start of deep learning era (and is a convolutional neural network)
- 2016: Machine learning surpasses human accuracy

Object Detection

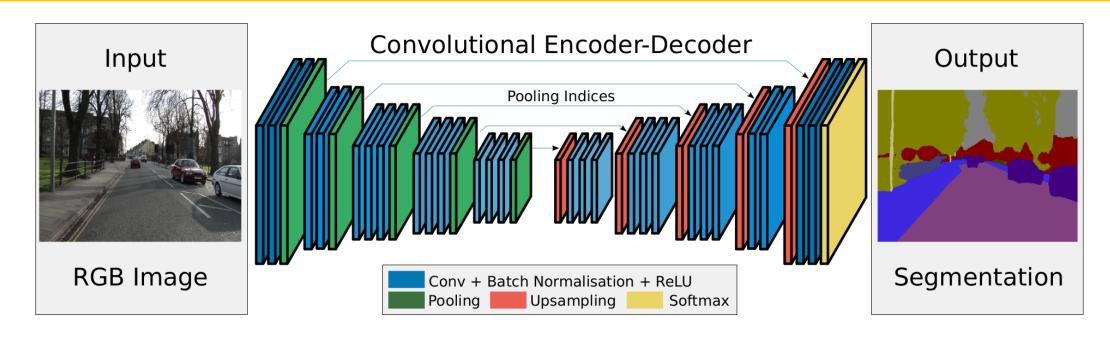
- Task: Identify objects, provide bounding boxes, and label them
- One strategy:
 Propose
 candidate
 bounding boxes,
 then classify each
 box (possibly as nothing)

Semantic Segmentation

 Task: Predict a class label for each pixel



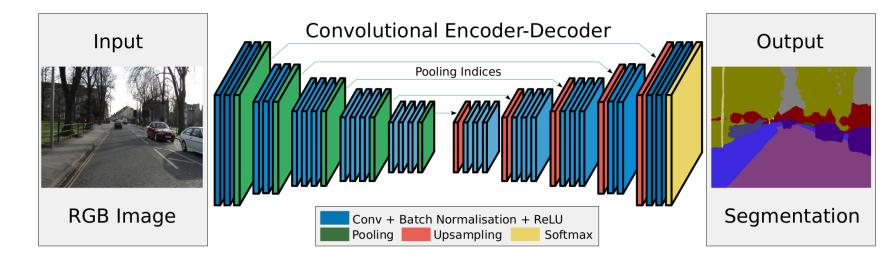
Semantic Segmentation



- One strategy: Encoder-Decoder ("U-net")
 - First do conv + ReLU + pooling as before
 - Then do upsampling + conv + ReLU to generate an output of original size

Image Generation

- Segmentation: "generates" a 2-D grid of predictions
 - This is almost like generating an image
- Can we use CNNs to generate new images?



- Training: Add noise to good images, train neural network to undo the noise
 - Input: Noisy image
 - Output: Less noisy image
 - Architecture: Can also use U-Net
 - Objective: Per-pixel regression loss

Add noise to picture, create training data

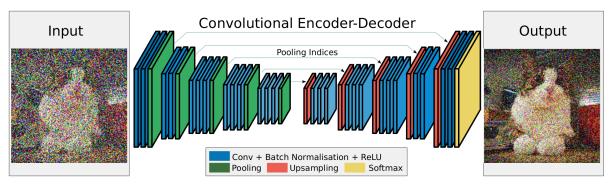
Train model to reverse the process

- Training: Add noise to good images, train neural network to undo the noise
 - Input: Noisy image
 - Output: Less noisy image
 - Architecture: Can also use U-Net
 - Objective: Per-pixel regression loss

Add noise to picture, create training data

Train model to reverse the process

- Training: Add noise to good images, train neural network to undo the noise
 - Input: Noisy image
 - Output: Less noisy image
 - Architecture: Can also use U-Net
 - Objective: Per-pixel regression loss



Noisy Image

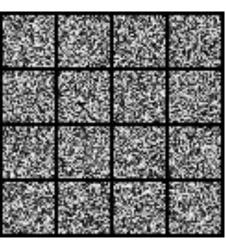
Less Noisy Image

Add noise to picture, create training data

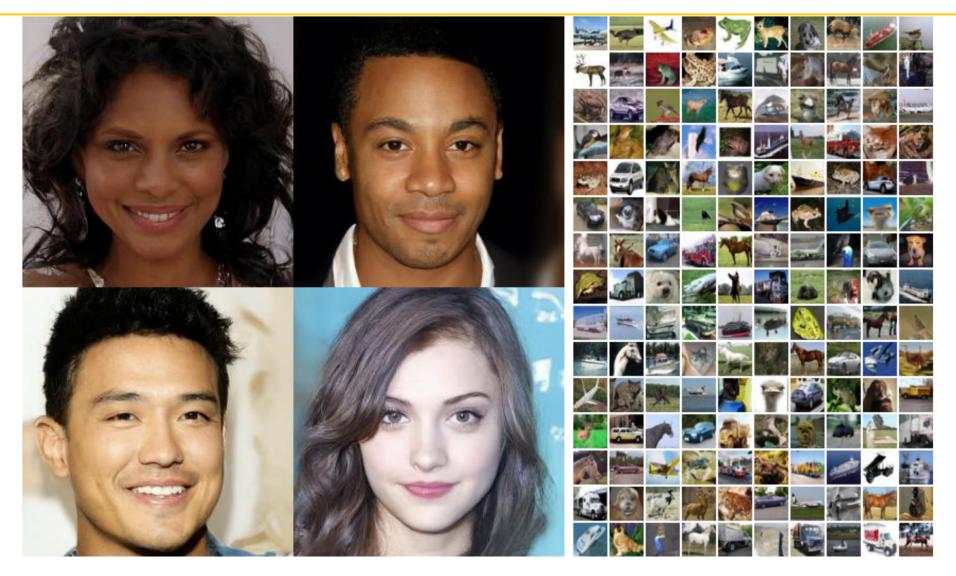
Train model to reverse the process

- Training: Add noise to good images, train neural network to undo the noise
 - Input: Noisy image
 - Output: Less noisy image
 - Architecture: Can also use U-Net
 - Objective: Per-pixel regression loss
- Test-time: Start from pure noise, apply the neural network many times to create an image!
- How to input a caption? More on this later...

Test time: Model converts noise to images over many iterations



Diffusion Model Generated Images



Announcements

- HW1 Regrades: Open until next Tuesday, February 27
- HW2 Due Thursday, February 29
- Midterm exam Thursday, March 7
 - In-class, 80 minutes in SLH 100
 - Allowed one double-sided 8.5x11 sheet of notes
 - Practice Exams from past 2 semester will be released soon
- Section tomorrow: Sci-kit learn

Outline

- Computer vision tasks
- Word vectors
 - What do we want?
 - word2vec
 - Solving analogies
 - Bias in word vectors

Word vectors

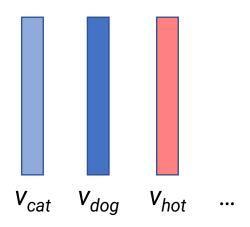
- Goal: For each word w, learn vector v_w that represents word's meaning
 - Similar words should have similar vectors
 - Different components of the vector may represent different properties of a word
- Why?
 - Neural networks take vectors as inputs. To feed them sentences, need to represent each word as a vector
 - Independently interesting to understand relationships between words

Word w	Vector v _w
Α	[-0.4, 1.4, -1.2]
Aardvark	[2.2, -1.8, 0.6]
Airport	[0.7, 0.3, 3.1]
•••	
Elephant	[2.1, -1.3, 0.3]
•••	
Zoo	[2.1, -1.4 3.2]

Related to animals? Is a place

Lexical Semantics

- Word vectors should capture lexical semantics
 - Lexical = word-level
 - Semantics = meaning
- What do we want to represent?
 - Synonymy (car/automobile) or antonymy (cold/hot)
 - Hypernymy/Hyponymy (animal/dog)
 - Similarity (cat/dog, coffee/cup, waiter/menu)
 - Various features
 - Sentiment (positive/negative)
 - Formality
 - All sorts of properties (Is a city? Is an action that a person can do?)



The Distributional Hypothesis

- You hear a new word, ongchoi
 - Ongchoi is delicious sauteed with garlic.
 - Ongchoi is superb over rice.
 - ...**ongchoi** leaves with salty sauces...

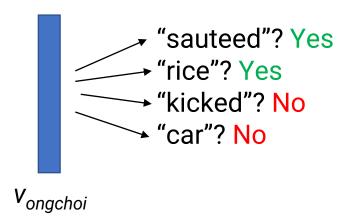
- Compare with similar contexts:
 - ...**spinach** sauteed with garlic over rice...
 - ...**chard** stems and leaves are delicious...
 - ...**collard greens** and other salty leafy greens
- Conclusion: ongchoi is probably a leafy green similar to spinach, chard, and collard greens
- <u>Distributional Hypothesis</u>: Words appearing in similar contexts have similar meanings!
- Firth 1957: "You Shall Know a Word by the Company It Keeps"

Outline

- Computer vision tasks
- Word vectors
 - What do we want?
 - word2vec
 - Solving analogies
 - Bias in word vectors

Word vectors as a learning problem

- Want to learn vector v_w for each word w
- What makes a vector good?
- Idea: v_w should help you predict which words co-occur with w
 - Captures distribution of context words for w
 - Think of it as N binary classification problems, where N is size of vocabulary



Creating a dataset

Word w ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
 - We don't really care about these supervised learning problems
 - We just care that we learn good vectors
- Task i: Did word w co-occur with the ith word?
 - Positive examples: Real co-occurrences within sliding window
 - Negative examples: Random samples

Creating a dataset

... lemon, a tablespoon of apricot jam, a pinch...

Window of radius 2

Word w ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1
apricot	seven	-1
apricot	forever	-1
apricot	dear	-1
apricot	if	-1

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
 - We don't really care about these supervised learning problems
 - We just care that we learn good vectors
- Task i: Did word w co-occur with the ith word?
 - Positive examples: Real co-occurrences within sliding window
 - Negative examples: Random samples

How to sample negatives?

Word w ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1
apricot	seven	-1
apricot	forever	-1
apricot	dear	-1
apricot	if	-1

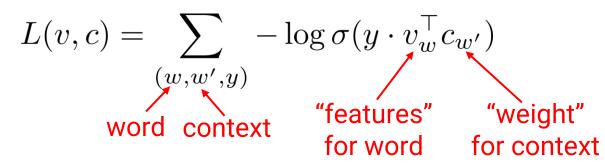
- Choose a fixed ratio of negative:positive (e.g. 2)
- Baseline: Sample according to frequency of word p(w) in the data
 - Not ideal because very common words ("the") get sampled a lot
- Improvement: Sample according to αweighted frequency

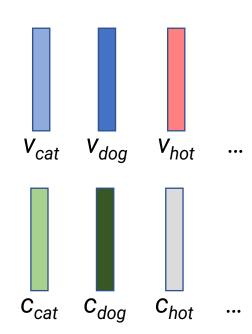
$$p_{\alpha}(w) = \frac{\operatorname{count}(w)^{\alpha}}{\sum_{w' \in V} \operatorname{count}(w')^{\alpha}}$$

- For α < 1, high-frequency words get downweighted
- Typically choose around α =.75

word2vec model

- Parameters (all of dimension d):
 - Word vector v_w for each word ("features"—the actual word vectors)
 - Context vector c_w for each word ("classifier weights" for task corresponding to w as context)
- Goal: v_w can be used by linear classifier to do any of the N "was this a context word" tasks
- Objective looks just like logistic regression:





Training word2vec

- Strategy: Gradient descent
- Gradient updates essentially same as logistic regression
 - Gradient w.r.t. c holds v fixed, so it's like v are fixed features

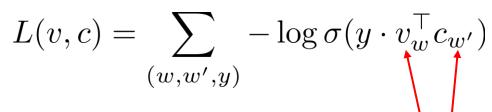
$$\nabla_{c_u} L(v,c) = \sum_{\substack{(w,w',y):w'=u\\ \text{Examples where w'} = u}} -\sigma(y\cdot v_w^\top c_u)\cdot y\cdot v_w$$
 Same as logistic regression where v_w is the input x

Gradient w.r.t. v is symmetrical

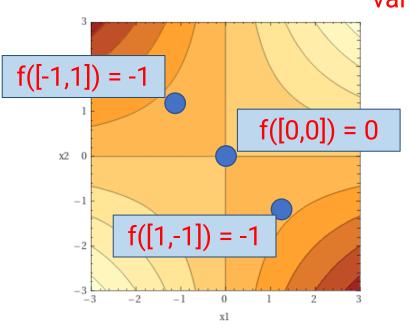
$$\nabla_{v_u} L(v,c) = \sum_{\substack{(w,w',y): w=u\\ \text{Examples where w = u}}} -\sigma(y \cdot v_u^\top c_{w'}) \cdot y \cdot c_{w'}$$
 Same as logistic regression where $c_{w'}$ is the input x

Is this a convex problem?

- Looks a lot like logistic regression...
- But it's not convex!
- Why?
 - In logistic regression, we only optimize w.r.t. weights, features are constant
 - Now we optimize both at the same time!
- Fact to remember: f(x) = x₁ * x₂ is not convex
 - Consider points [-1, 1] and [1, -1]
 - f(x) = -1 at both points
 - But at the midpoint [0, 0], f(x) = 0
- Corollary: We need to randomly initialize
 - Must break symmetry, as in neural networks

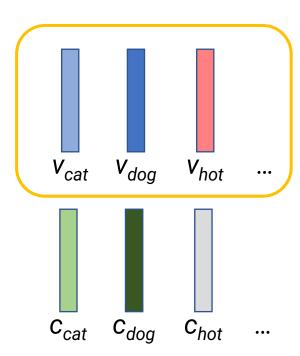


Both are optimization variables



word2vec overview

- Acquire large unsupervised text corpus
- Create positive examples for every word by using sliding window
- Create negative examples by randomly sampling context word from weighted word frequency
- Randomly initialize all v and c vectors
- Train on logistic regression-like loss with gradient descent
- Return v vectors
 - c vectors not needed—just helpers

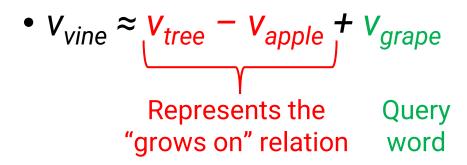


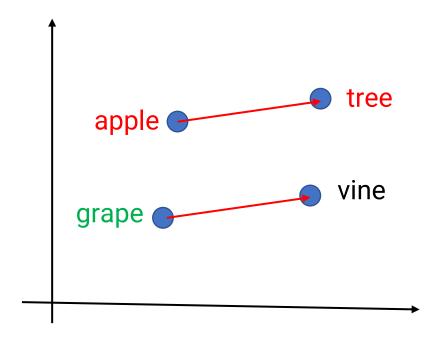
Outline

- Computer vision tasks
- Word vectors
 - What do we want?
 - word2vec
 - Solving analogies
 - Bias in word vectors

Analogies in vector space

- Apple is to tree as grape is to...
- In vector space, resembles a parallelogram
 - Same relationship between apple and tree holds between grape and vine





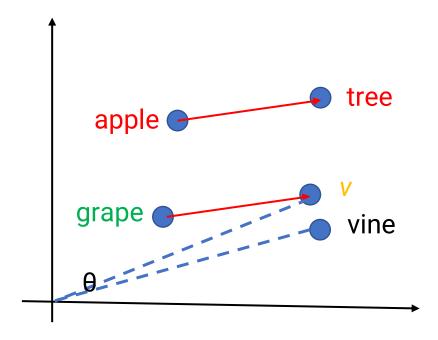
Answering analogy queries

- Compute $v = v_{tree} v_{apple} + v_{grape}$
- Find word w in vocabulary whose v_w is most similar to v
 - Common choice: Cosine similarity

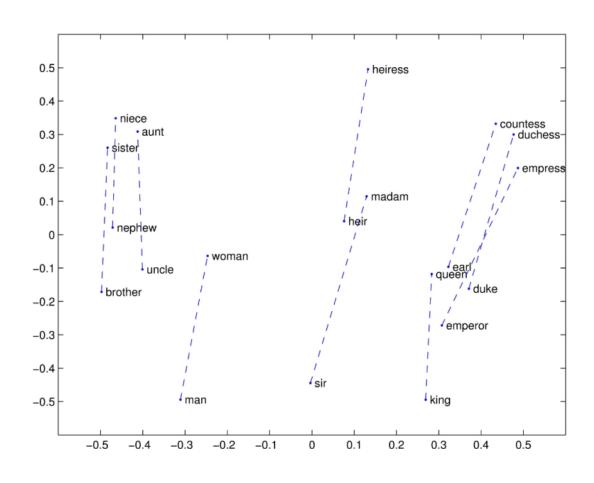
$$\operatorname{cossim}(x,y) = \frac{x^{\top}y}{\|x\| \|y\|}$$

(= cosine of angle between x and y)

• Typically need to exclude words very similar to the query word (e.g. "grapes")

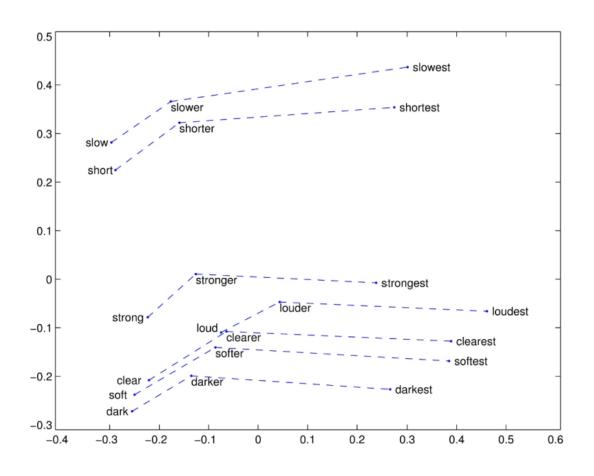


Visualizing Analogies



- Figure: *Dimensionality reduction* to 2D, then plot words with known relationship
 - We'll talk about dimensionality reduction later!
- Roughly same difference between male/female versions of the same word

Visualizing Analogies



- Figure: *Dimensionality reduction* to 2D, then plot words with known relationship
 - We'll talk about dimensionality reduction later!
- Roughly same difference between base, comparative, and superlative forms of adjectives

Outline

- Computer vision tasks
- Word vectors
 - What do we want?
 - word2vec
 - Solving analogies
 - Bias in word vectors

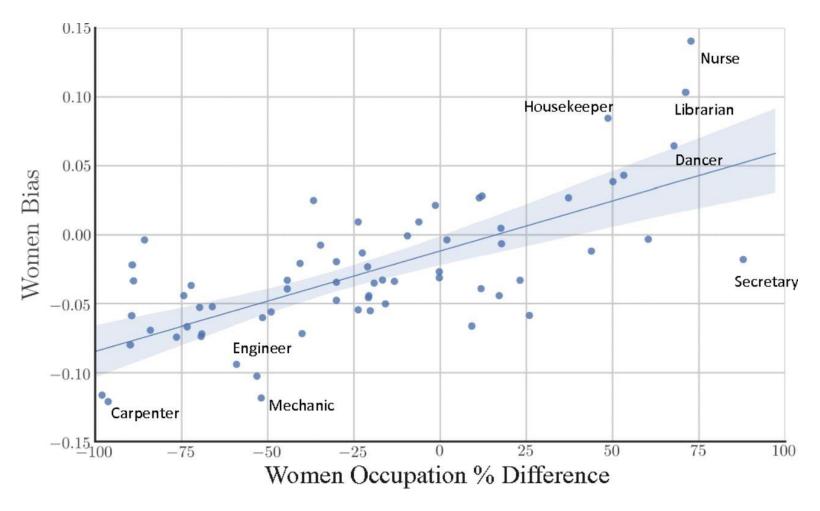
Machine learning is a tornado

- ...it picks up everything in its path
- Data has all sorts of associations we may not want to model

What word associations are out there?

- What is programmer man + woman?
 - According to word vectors trained on news data, it's homemaker
 - Existing data has tons of correlations between occupation and gender
- word2vec doesn't know what is a semantic relationship and what is a historical correlation
 - "queen" is more related to "she" than "he" semantically
 - "nurse" may co-occur more with "she" than "he" in available data but not a semantic relationship!

Word vectors quantify gender stereotypes



- X-axis: Real percentage difference in workforce between women & men
- Y-axis: Embedding bias

 difference of distance
 from male-related
 words and female-related words
- Strong correlation!

Conclusion

- Distributional hypothesis: Words that appear in similar contexts have similar meanings
- word2vec: Learn vectors by inventing a prediction problem (did this wordcontext pair really occur in the text?)
- Vector arithmetic lets us complete relations
- Vectors capture both lexical semantics and historical biases
- Next time: Word vectors as a component of neural networks for processing text

