Introduction to
Neural Networks
Robin Jia

USC C5CI 467, Spring 2024
February 8, 2024

Review: Linear Models

« Examples: Linear regression, logistic regression, softmax
regression

» Test time: Make a prediction based on learned parameters
* E.g., linear regression: Ypred = w'z+b, after learning w and b

 Training time: Learn model parameters
« Use gradient descent to minimize average loss over training dataset
 E.g., linear regression:

1 — | | |
VuwL(w,b) = - Z Q(w'l'x(z) +bh— y(%)) (8
1=1

Review: Linear Models

e Pro: Easier to understand what model
is doing

* Pro: Optimizes convex loss function,
gradient descent guaranteed to work

» Con: Can only learn linear function of
input features

 Workaround #1;: Add more features—but
this requires manual tweaking

« Workaround #2: Use kernels, but only
adds more features in pre-defined ways

Method for learning features from data

Powerful family of non-linear functions

Set of building blocks to create complex models

Method for Powerful family Set of building
learning features of non-linear blocks to create
from data functions complex models

Deep Learning

Machine Learning using Neural Network models

Method for learning features from data

A (toy) self-driving car example

Action 2: » Three-way classification problem:
Go straight Go left, straight, or right?

Action 1: ‘ Action3: « What features are important here?

Turn left Turn right
\ % / g e |s front clear?

- * Is left clear?
s

* Is right clear?

10

A (toy) self-driving car example

« Suppose we had these features:

Action 2:
Go straight * 2=[z,2, 24
« z, = 1if frontis clear, O else
Action 1: ‘ Action 3: : 42 i 1 I: I.efLIS. Clelar, Ooelsle
Turn left \ / Turn right Zg = 11rrightis clear, U else
%ﬁ « With this, we can do softmax regression:
.y g % Score for “straight”: 20 z, - 10
| - Score for “left”: 10 z, — 10
H l.‘ « Score for “right”: 10z; — 10
e Behavior

« If everything is clear, go straight

« If front is blocked, go left or right if those are
clear

« If everything is blocked, all equally bad

11

A (toy) self-driving car example

Action 2: « How can we write the feature “is front
Go straight clear”?
Action 1: ‘ Action3: « Checking if the front is clear is itself a

Tum'eﬂ\ %ﬁ / Turn right machine learning problem

* Input = camera image/lidar data,
Output = whether there is an obstacle

* Obstacle near or far away?
« Hard obstacle or a plastic bag?

» Can we make our features the outputs
of another “classifier"?

Feature learning

Classifier 2:
Is left clear?

>

¢l aSsifigr 3.

%

0
Classifier 4:
Where to go?
1
0

Outputy
Turn left

|

This is a neural network!

13

2-layer Neural Network, Regression

\ - :

X =9 - Hidden layer = A bunch of
) - Linear logistic regression classifiers
W > regression Output - Parameters: w; and b; for each

= >y classifier, for each j=7, .., h
vV zZ+cC :
 h = number of neurons in
(T, hidden layer (“hidden nodes”)
Input x ~ %) Produces “activations”= learned
(vector of z,=|.8 feature vector
length d) Hidden layer Final layer = linear model
“activations” z For regression: linear model
(vector-oftength h) with weight vector v and bias ¢
\ A l
| |

Hidden layer Final layer

14

2-layer Neural Network, Binary Classification

69\

-
(w,T, ‘
Input N
z,=|.

 Hidden layer = A bunch of
logistic regression classifiers

Logistic
: - Parameters: w; and b, for each
regression . Output classifier, for ach j=1, .., h
o(vT 2+ ¢) y « h = number of neurons in

hidden layer (“hidden nodes”)

 Produces “activations”= learned
feature vector

(vector of edioted robaniie. Finallayer = linear model
length d) Hidden layer breea:cc::helopi;)tic? | « For binary classification: linear
“activations” z /)~ ~octiodiste model with weight vector v and
regression classifier bias ¢
(vector-oflength h) .
 Only final layer changes when
\ Y Y J changing to a different task
Hidden layer Final layer

15

S

2-layer Neural Network, Multi-Class Classification

eS

 Hidden layer = A bunch of
logistic regression classifiers

Softmax
reqression Outout - Parameters: w; and b; for each
9 , —dtpu classifier, for €ach j=1, .., h
Vs #te y - h = number of neuronsin
o SC v hidden Iayf:r (.hldc.jen r:odes)
LTy, k=1 * Produces “activations”= learned
Input N feature vector
(vector of Zh= edioted robaniie. Finallayer = linear model
length d) Hidden layer breea:ghelopi;)tis Hes » For multi-class classification:
“activations” z y 99 » linear model with weight vector
(vector-oftength h) regression classifier v, and bias ¢, for each class k
 Only final layer changes when
\ Y Y J changing to a different task
Hidden layer Final layer

16

Feature Learning with Neural Networks

Classifier 2: Classifier 4:

9 Where to go?
|s left clear R : 9 . Outputy

Turn left

C/aSsif,'e ra.

\%} 0
/Y

Learn a classifier whose output is a good feature Learn to classify based on features

We don't tell the model what classifier to learn (same as linear model)
Learn from data that “is front clear” is a useful concept

Input x

17

Feature Learning with Neural Networks

i . 1. - Plan: Train neural networks to mimic
A 1 | =random training data via gradient descent
> L
e + Initially, each neuron makes random
Final classification “predictions.” Some by
Neuron 2 Classifier chance are mildly useful
— &— Output
\ y
~ random
~ random, but
vaguely ~ random

detects if front
is road-colored

18

Feature Learning with Neural Networks

=~ random, but
vaguely

detects if front

is road-colored

~ random

Final

Classifier
A—p OQutput

y

If z; = 1, go straight;
else turn random
direction

~ random

« Plan: Train neural networks to mimic
training data via gradient descent

- Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

- Final layer learns to use the most useful
neurons to make final prediction

19

Feature Learning with Neural Networks

=~ “I|s front
clear?”

~ random

Final
Classifier

A—p OQutput
y

If z; = 1, go straight;
else turn random
direction

~ random

Plan: Train neural networks to mimic
training data via gradient descent

Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

Final layer learns to use the most useful
neurons to make final prediction

The neurons that get used are incentivized
to become better, to improve final
accuracy

20

Feature Learning with Neural Networks

=~ “I|s front
clear?”

~ “|s |left clear?”
Final
Classifier
A—p OQutput

y

If z; = 1, go straight;
else turn left or right
based on z, and z,

= “Is right
clear?”

Plan: Train neural networks to mimic
training data via gradient descent

Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

Final layer learns to use the most useful
neurons to make final prediction

The neurons that get used are incentivized
to become better, to improve final
accuracy

« Other neurons slowly change to surface

useful information not already captured by
other neurons

Even’guaIIY, learned features are very useful
and final layer can predict well!

21

Summary: Neural Networks as Feature Learners

 Neural networks learn new features from data

« Each learned feature is the output of a classifier using the original
input features

* These classifiers can be “trained” to produce features that help the
final layer make good predictions

Announcements

* Project proposals due next Tuesday @ 11:59pm
« Submit as one group on gradescope (one submission per group)

e Section tomorrow: Review of linear methods
* Fill out the poll on piazza!

« Homework 2 released soon, Due February 29

Powerful family of non-linear functions

24

Neural Networks are Non-linear Functions

« Second view: Neural networks compute a non-linear function of
input to make predictions
* As a result, neural networks can learn many functions that linear models
cannot

* In most other ways, neural networks are very similar to their linear
counterparts!
« E.g., Training is mostly the same

2-layer Neural Network, Regression

\ :

(X 7= 9 - Hidden layer = A bunch of
1) - Linear logistic regression classifiers
V 20 regression Output - Parameters: w; and b; for each

= >y classifier, for each j=7, .., h
vV zZ+cC :
 h = number of neurons in
(T, hidden layer (“hidden nodes”)
Input x ~ %) Produces “activations”= learned
(vector of z,=|.8 feature vector
length d) Hidden layer Final layer = linear model
“activations” z For regression: linear model
(vector of length h) with weight vector v and bias ¢
\ A l
| |

Hidden layer Final layer

2-layer Neural Network in Matrix Form

Element-wise sigmoid ,
 Hidden layer = A bunch of

o(v) =lofvr) o(vz),... o (on) ! logistic regression classifiers

l near - Parameters: w; and b; for each

o(Wx+ D) regression | Output classifier, for éach j=1, .., h

> T y « Equivalently: matrix W (h x d) and
vizte ‘ vector b (length h)

* h = number of neurons in hidden
layer (“hidden nodes”)

Input x gverall output: Produces “activations”= learned
(vector of vio(Wz+0b)+c feature vector

length d) Hidden layer - Final layer = linear model

“activations” z « For regression: linear model with
(vector of length h) weight vector v and bias ¢

\ A | . Parameters of model are
| | 0=(W,b,v,c)

Hidden layer Final layer

27

Training Neural Networks

Linear Regression Regression w/ Neural Networks
* Model's output is * Model’s output is
B
g(z) =w x+b g(x)=v'o(Wz+b)+c
* (Unregularized) loss function is » Use same loss function, in terms of g!
1 <& | . n
s (1)) _ 4(1))2 1 Z. Z.
n;(g(w) —y) Eiz:;(g(ac(>)—y<))2

Training objective for both types of models:

Also applies for

1 &
- Zﬁ (y(z),g(gj(z))) . where ((y,u) = (y — u)? logistic regression,
e softmanx regression, etc.

28

Training Neural Networks

1 — _ |
ian: L () (40
General loss function: - % ¢ (y gl))

AN

Model’s output, depends on all

» How to minimize? Gradient Descent! mode| parameters 6
- | (includes all layers)
6 6—n n > Vet (y“), g(fc(“)) }
1=1
|

Average of per-example gradients

* In practice, use a variant of traditional gradient descent
« (Will discuss in 2 classes)

29

Importance of “Non-linearities”

With sigmoid,
overall output is:
v'o(Wz+b)+c

Without sigmoid,
overall output is:

v (Wax+Db)+c
= (' W)+ ('b+ec)

« Having the sigmoid is very important!
« What if we skipped the sigmoid?

 Result: Just another way to write a linear
function!
* New “weight” is vIW
« New “bias” isv’b +c

« Having a simple non-linear function
(like sigmoid) between the two linear
operations enables us to learn a
complex non-linear function!

Options for Non-linearities
Sigmoid Tanh RelLU

1: .. 622 _ 1 6 ! 2 . 2 i 6
o(z) = tanh(z) = — — ReLU(z) = max(z, 0)

« Many options work, just must be differentiable (for gradient descent)
« Sometimes called “activation functions” or just “non-linearities”

* |In practice: tanh and ReLU often preferred
« Tanh: Better than sigmoid because outputs centered around zero
* RelLU: Very fast to compute

Non-linearities make NN’s more expressive

X2
« XOR: Classic binary classification problem that can't
1 — be solved by linear classifier

A 2-layer neural network can solve it!

| can choose values for the parameters that lead to perfect
classification on this dataset

X « Conclusion: Neural networks are more expressive than
1 1 linear models

Zq =1 if both are O, =0 else 05—2z1 — 20 <0Qif XOR(X,I, X2) =0

>
Z,| =1 if both are 1, =0 else >0 if XOR(x4, X,) =1

32

Universal Approximation

 Fact: Any function can be approximated by a 2- -+
layer neural network with enough hidden units y‘@’\l_q (x)
« 2-layer neural networks are thus “universal xkﬁ/f e
approximators” -,

* Note: Also true for k-NN, SVM with RBF kernel...

* Proof sketch G m
» First layer learns a bunch of indicator-like features like M n.

“isx>17?", "is x> 2?" etc. i B\j .
- This divides space into a bunch of buckets of width 1 oy
« Second layer assigns correct value to each bucket NS, af
« If you have enough hidden units, you can make buckets N

really small and approximate a function very well

Summary: Neural Networks as Non-linear Functions

* Neural Networks are a type of learnable non-linear function
» Contrast with previous models, which are learnable linear functions

 Constructed from multiple layers, each of which have their own
learnable parameters

* Non-linearities between layers make the model much more
expressive—can represent any function with a big enough network
and right choice of parameters

« Whereas linear models just cannot learn certain functions, like XOR

» Learning process works the same way as for linear models

Multi-Layer Perceptron (MLP)

WDz +bD) | (W0 1 5@ || (@@ 4 p3) o T3 4 ¢
> > > » Qutputy
Input x 4-layer MLP
First hidden Second hidden Third hidden
layer z() layer z(? layer z®®

« What we saw so far is called a “2-layer perceptron”

« But we can add more layers!
« Corresponds to more complex feature extractor

* In practice, making networks “deeper” (more layers) often helps more
than making them “wider” (more hidden units in each layer)

- Layers are “fully connected” as each neuron depends on every neuron
in previous layer
35

Set of building blocks to create complex models

36

Deep Learning as a Set of Building Blocks

* Neural Network = Many “layers”
stacked on top of each other

« Each “layer” takes in some input and
computes some output

« Simplest layers are basic building
blocks, can build more complex
layers from those

- Arrangement of layers is called an
“architecture”

« Deep Learning: Design suitable
neural architectures with various
reusable building blocks

« This is the view of most deep
learning programming libraries like

pytorch

37

The Basic “Building Blocks”

(1) Linear Layer Output y, shape (doy)
* Input x: Vector of dimension d,, ‘
* Qutput y: Vector of dimension d, Linear Layer
Compute

 Formula:y =Wx +Db y=Wx+b
¢ Parameters Params: W, b

« W:d,, x d,, matrix

 b:d,_, vector]

* In pytorch: nn.Linear() Input x, shape (d;,,)

The Basic “Building Blocks”

(2) Non-linearity Layer
* [nput x: Any number/vector/matrix

 Qutput y: Number/vector/matrix of
same shape

 Possible formulas:
« Sigmoid: y = o(x), elementwise
« Tanh: y = tanh(x), elementwise
 Relu: y = max(x, 0), elementwise
« Parameters: None

« In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

Output y, same shape as x

Sigmoid Layer
Compute

y; = o(x;)
for eachii

ﬂk

Input x, any shape

The Basic “Building Blocks”

(2) Non-linearity Layer
* [nput x: Any number/vector/matrix

 Qutput y: Number/vector/matrix of
same shape

 Possible formulas:
« Sigmoid: y = o(x), elementwise
« Tanh: y = tanh(x), elementwise
 Relu: y = max(x, 0), elementwise
« Parameters: None

« In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

Output y, same shape as x

RelLU Layer
Compute

y; = max(x; 0)
for each i

ﬂk

Input x, any shape

The Basic “Building Blocks”

Output z,
(3) Loss Layer scalar

* Inputs:
* Yored- Shape depends on task
* Yiue SCalar (e.g., correct regression value or class index)

« Output z: scalar

* Possible formulas:
» Squared |0SS: Y, is scalar, Z = (Ypreq = Yirue)?
- Softmax regression loss: y, .4 is vector of length C,

C 7'y
Z = — (ypred [ytrue] — 10g Z eXp(ypfed [Z])) ‘

1=1
Input y, e, Input y,....
« Parameters: None scal ;;ed Scalg;ue

* In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Compute
Z= (Ypred B ytrue)2

Building Linear Regression Training Loop

Output: loss
» Step 1: Compute the loss on

one example at a time
« Training example is (X, y) MSEL oss Laver
* X is vector of length d, y is scalar Compute

- 2= (Vs ~ Yo’
O
-O o
§ Inear Laye ‘
= Outputs wix + b Input y
48]
GC) din=d' dout=‘I
i Params: w, b

Input x

Building Linear Regression Training Loop

Output: loss
» Step 1: Compute the loss on

one example at a time
* Training example is (X, y)
* X is vector of length d, y is scalar

MSELoss Layer

Compute

» Step 2: Compute gradient of o Z = (Y}Mue)z

loss with respect to all k= .

inear Laye

parameters cEE — Outputs wix + b Input y
» Step 3: Update@ll parameters> 2 din=d, doyy~1

with gradient descent update - L Params{w)p)

rule

Input x

Building a 2-layer MLP for Regression

o Output: loss
- Steps for training are exactly the
same!
- Step 1: Compute the loss on one MSELoss Layer
example at a time B £ (Yored “Yire)
 Training example is (x, y) S r .
X is vector of length d, y is scalar § 4 n:ar La)((jer 1
» Step 2: Compute gradient of loss z Barare o Inputy
with respect to all parameters E T
* Next class: I(Ilomp#’:)e grkadient 2 Sigmoid Layer
automatically with backpropagation. — .
Easy if each building block is < Linear Layer 1
differentiable!] din=d, doy=dhiggen
2 o

. Step 3: UpdatWith - Params:W})(b”
gradient descent e ‘

Input x
44

Summary: Deep Learning as Building Blocks

* Power of deep learning: You can
stack building blocks together any
way you want

* No “right” or “wrong” architecture,
just different design decisions

» Best architecture choice depends on
the task and data

» Endless possibilities for new
architectures

45

Method for Powerful family Set of building
learning features of non-linear blocks to create
from data functions complex models

46

	Default Section
	Slide 1: Introduction to Neural Networks
	Slide 2: Review: Linear Models
	Slide 3: Review: Linear Models
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: A (toy) self-driving car example
	Slide 11: A (toy) self-driving car example
	Slide 12: A (toy) self-driving car example
	Slide 13: Feature learning
	Slide 14: 2-layer Neural Network, Regression
	Slide 15: 2-layer Neural Network, Binary Classification
	Slide 16: 2-layer Neural Network, Multi-Class Classification
	Slide 17: Feature Learning with Neural Networks
	Slide 18: Feature Learning with Neural Networks
	Slide 19: Feature Learning with Neural Networks
	Slide 20: Feature Learning with Neural Networks
	Slide 21: Feature Learning with Neural Networks
	Slide 22: Summary: Neural Networks as Feature Learners
	Slide 23: Announcements
	Slide 24
	Slide 25: Neural Networks are Non-linear Functions
	Slide 26: 2-layer Neural Network, Regression
	Slide 27: 2-layer Neural Network in Matrix Form
	Slide 28: Training Neural Networks
	Slide 29: Training Neural Networks
	Slide 30: Importance of “Non-linearities”
	Slide 31: Options for Non-linearities
	Slide 32: Non-linearities make NN’s more expressive
	Slide 33: Universal Approximation
	Slide 34: Summary: Neural Networks as Non-linear Functions
	Slide 35: Multi-Layer Perceptron (MLP)
	Slide 36
	Slide 37: Deep Learning as a Set of Building Blocks
	Slide 38: The Basic “Building Blocks”
	Slide 39: The Basic “Building Blocks”
	Slide 40: The Basic “Building Blocks”
	Slide 41: The Basic “Building Blocks”
	Slide 42: Building Linear Regression Training Loop
	Slide 43: Building Linear Regression Training Loop
	Slide 44: Building a 2-layer MLP for Regression
	Slide 45: Summary: Deep Learning as Building Blocks
	Slide 46

