
Introduction to
Neural Networks

Robin Jia
USC CSCI 467, Spring 2024

February 8, 2024

Review: Linear Models

• Examples: Linear regression, logistic regression, softmax
regression

• Test time: Make a prediction based on learned parameters
• E.g., linear regression: , after learning w and b

• Training time: Learn model parameters
• Use gradient descent to minimize average loss over training dataset

• E.g., linear regression:

2

Review: Linear Models

• Pro: Easier to understand what model
is doing

• Pro: Optimizes convex loss function,
gradient descent guaranteed to work

• Con: Can only learn linear function of
input features
• Workaround #1: Add more features—but

this requires manual tweaking

• Workaround #2: Use kernels, but only
adds more features in pre-defined ways

3

4

Method for learning features from data

5

Powerful family of non-linear functions

6

Set of building blocks to create complex models

7

Method for
learning features

from data

Powerful family
of non-linear

functions

Set of building
blocks to create
complex models

8

Deep Learning

Machine Learning using Neural Network models

9

Method for learning features from data

A (toy) self-driving car example

• Three-way classification problem:
Go left, straight, or right?

• What features are important here?
• Is front clear?

• Is left clear?

• Is right clear?

10

Action 1:
Turn left

Action 2:
Go straight

Action 3:
Turn right

A (toy) self-driving car example

• Suppose we had these features:
• z = [z1, z2, z3]
• z1 = 1 if front is clear, 0 else
• z2 = 1 if left is clear, 0 else
• z3 = 1 if right is clear, 0 else

• With this, we can do softmax regression:
• Score for “straight”: 20 z1 – 10
• Score for “left”: 10 z2 – 10
• Score for “right”: 10z3 – 10

• Behavior
• If everything is clear, go straight
• If front is blocked, go left or right if those are

clear
• If everything is blocked, all equally bad

11

Action 1:
Turn left

Action 2:
Go straight

Action 3:
Turn right

A (toy) self-driving car example

• How can we write the feature “is front
clear”?

• Checking if the front is clear is itself a
machine learning problem
• Input = camera image/lidar data,

Output = whether there is an obstacle

• Obstacle near or far away?

• Hard obstacle or a plastic bag?

• Can we make our features the outputs
of another “classifier”?

12

Action 1:
Turn left

Action 2:
Go straight

Action 3:
Turn right

Feature learning

13

Input x

Classifier 2:
Is left clear?

0

1

0

Classifier 4:
Where to go?

Output y
Turn left

This is a neural network!

Linear
regression

2-layer Neural Network, Regression

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h

• h = number of neurons in
hidden layer (“hidden nodes”)

• Produces “activations”= learned
feature vector

• Final layer = linear model
• For regression: linear model

with weight vector v and bias c

14

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8
Predicted probabilities
by each logistic
regression classifier

Hidden layer Final layer

Logistic
regression

2-layer Neural Network, Binary Classification

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h
• h = number of neurons in

hidden layer (“hidden nodes”)
• Produces “activations”= learned

feature vector

• Final layer = linear model
• For binary classification: linear

model with weight vector v and
bias c

• Only final layer changes when
changing to a different task

15

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Hidden layer Final layer

Output
y

z1= .9

z2= .2

zh= .8
Predicted probabilities
by each logistic
regression classifier

Softmax
regression

2-layer Neural Network, Multi-Class Classification

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h
• h = number of neurons in

hidden layer (“hidden nodes”)
• Produces “activations”= learned

feature vector

• Final layer = linear model
• For multi-class classification:

linear model with weight vector
vk and bias ck for each class k

• Only final layer changes when
changing to a different task

16

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8
Predicted probabilities
by each logistic
regression classifier

Hidden layer Final layer

Feature Learning with Neural Networks

17

Input x

Classifier 2:
Is left clear?

0

1

0

Classifier 4:
Where to go?

Output y
Turn left

Learn to classify based on features
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Learn from data that “is front clear” is a useful concept

Feature Learning with Neural Networks

• Plan: Train neural networks to mimic
training data via gradient descent

• Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

18

Input
x

z1

z2

z3

Final
Classifier

Output
y

≈ random

≈ random, but
vaguely

detects if front
is road-colored

≈ random

≈ random

Feature Learning with Neural Networks

• Plan: Train neural networks to mimic
training data via gradient descent

• Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

• Final layer learns to use the most useful
neurons to make final prediction

19

Input
x

z1

z2

z3

Final
Classifier

Output
y

≈ random

≈ random, but
vaguely

detects if front
is road-colored

If z3 = 1, go straight;
else turn random

direction

≈ random

Feature Learning with Neural Networks

• Plan: Train neural networks to mimic
training data via gradient descent

• Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

• Final layer learns to use the most useful
neurons to make final prediction

• The neurons that get used are incentivized
to become better, to improve final
accuracy

20

Input
x

z1

z2

z3

Final
Classifier

Output
y

≈ random

If z3 = 1, go straight;
else turn random

direction

≈ random
≈ “Is front

clear?”

Feature Learning with Neural Networks

• Plan: Train neural networks to mimic
training data via gradient descent

• Initially, each neuron makes random
classification “predictions.” Some by
chance are mildly useful

• Final layer learns to use the most useful
neurons to make final prediction

• The neurons that get used are incentivized
to become better, to improve final
accuracy

• Other neurons slowly change to surface
useful information not already captured by
other neurons

• Eventually, learned features are very useful
and final layer can predict well!

21

Input
x

z1

z2

z3

Final
Classifier

Output
y

≈ “Is left clear?”

If z3 = 1, go straight;
else turn left or right
based on z1 and z2

≈ “Is front
clear?” ≈ “Is right

clear?”

Summary: Neural Networks as Feature Learners

• Neural networks learn new features from data

• Each learned feature is the output of a classifier using the original
input features

• These classifiers can be “trained” to produce features that help the
final layer make good predictions

22

Announcements

• Project proposals due next Tuesday @ 11:59pm
• Submit as one group on gradescope (one submission per group)

• Section tomorrow: Review of linear methods
• Fill out the poll on piazza!

• Homework 2 released soon, Due February 29

23

24

Powerful family of non-linear functions

Neural Networks are Non-linear Functions

• Second view: Neural networks compute a non-linear function of
input to make predictions
• As a result, neural networks can learn many functions that linear models

cannot

• In most other ways, neural networks are very similar to their linear
counterparts!
• E.g., Training is mostly the same

25

Linear
regression

2-layer Neural Network, Regression

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h

• h = number of neurons in
hidden layer (“hidden nodes”)

• Produces “activations”= learned
feature vector

• Final layer = linear model
• For regression: linear model

with weight vector v and bias c

26

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8

Hidden layer Final layer

Linear
regression

2-layer Neural Network in Matrix Form

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h
• Equivalently: matrix W (h x d) and

vector b (length h)
• h = number of neurons in hidden

layer (“hidden nodes”)
• Produces “activations”= learned

feature vector

• Final layer = linear model
• For regression: linear model with

weight vector v and bias c

• Parameters of model are
θ = (W, b, v, c)

27

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

Element-wise sigmoid

Overall output :

Hidden layer Final layer

Training Neural Networks

Linear Regression

• Model’s output is

• (Unregularized) loss function is

Regression w/ Neural Networks

• Model’s output is

• Use same loss function, in terms of g!

28

Training objective for both types of models:
Also applies for
logistic regression,
softmax regression, etc.

Training Neural Networks

• How to minimize? Gradient Descent!

• In practice, use a variant of traditional gradient descent
• (Will discuss in 2 classes)

29

General loss function:

Model’s output, depends on all
model parameters θ
(includes all layers)

Average of per-example gradients

Importance of “Non-linearities”

• Having the sigmoid is very important!

• What if we skipped the sigmoid?

• Result: Just another way to write a linear
function!
• New “weight” is vTW

• New “bias” is vTb + c

• Having a simple non-linear function
(like sigmoid) between the two linear
operations enables us to learn a
complex non-linear function!

30

With sigmoid,
overall output is:

Without sigmoid,
overall output is:

Options for Non-linearities

• Many options work, just must be differentiable (for gradient descent)
• Sometimes called “activation functions” or just “non-linearities”

• In practice: tanh and ReLU often preferred
• Tanh: Better than sigmoid because outputs centered around zero
• ReLU: Very fast to compute

31

Tanh ReLUSigmoid

Non-linearities make NN’s more expressive

• XOR: Classic binary classification problem that can’t
be solved by linear classifier

• A 2-layer neural network can solve it!
• I can choose values for the parameters that lead to perfect

classification on this dataset
• Conclusion: Neural networks are more expressive than

linear models

32

x1

x2

1

1

x1

x2

≈1 if both are 0, ≈0 else

≈1 if both are 1, ≈0 else

z1

z2

< 0 if XOR(x1, x2) = 0

> 0 if XOR(x1, x2) = 1

Universal Approximation

• Fact: Any function can be approximated by a 2-
layer neural network with enough hidden units

• 2-layer neural networks are thus “universal
approximators”
• Note: Also true for k-NN, SVM with RBF kernel…

• Proof sketch
• First layer learns a bunch of indicator-like features like

“is x > 1?”, “is x > 2?”, etc.

• This divides space into a bunch of buckets of width 1

• Second layer assigns correct value to each bucket

• If you have enough hidden units, you can make buckets
really small and approximate a function very well

33

Summary: Neural Networks as Non-linear Functions

• Neural Networks are a type of learnable non-linear function
• Contrast with previous models, which are learnable linear functions

• Constructed from multiple layers, each of which have their own
learnable parameters

• Non-linearities between layers make the model much more
expressive—can represent any function with a big enough network
and right choice of parameters
• Whereas linear models just cannot learn certain functions, like XOR

• Learning process works the same way as for linear models

34

Multi-Layer Perceptron (MLP)

• What we saw so far is called a “2-layer perceptron”

• But we can add more layers!
• Corresponds to more complex feature extractor
• In practice, making networks “deeper” (more layers) often helps more

than making them “wider” (more hidden units in each layer)
• Layers are “fully connected” as each neuron depends on every neuron

in previous layer
35

Input x

First hidden
layer z(1)

Output y

Second hidden
layer z(2)

Third hidden
layer z(3)

4-layer MLP

36

Set of building blocks to create complex models

Deep Learning as a Set of Building Blocks

• Neural Network = Many “layers”
stacked on top of each other
• Each “layer” takes in some input and

computes some output
• Simplest layers are basic building

blocks, can build more complex
layers from those

• Arrangement of layers is called an
“architecture”

• Deep Learning: Design suitable
neural architectures with various
reusable building blocks
• This is the view of most deep

learning programming libraries like
pytorch

37

The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()

38

Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute
y = Wx + b

Params: W, b

The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

39

Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute
yi = σ(xi)

for each i

The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

40

Input x, any shape

Output y, same shape as x

ReLU Layer
Compute

yi = max(xi, 0)
for each i

The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

41

Input ypred,
scalar

Output z,
scalar

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input ytrue,
scalar

Building Linear Regression Training Loop

• Step 1: Compute the loss on
one example at a time
• Training example is (x, y)

• x is vector of length d, y is scalar

42

Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input x

Input y

L
in

e
a

r
M

o
d

e
l

Building Linear Regression Training Loop

• Step 1: Compute the loss on
one example at a time
• Training example is (x, y)

• x is vector of length d, y is scalar

• Step 2: Compute gradient of
loss with respect to all
parameters

• Step 3: Update all parameters
with gradient descent update
rule

43

Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input x

Input y

L
in

e
a

r
M

o
d

e
l

Building a 2-layer MLP for Regression

• Steps for training are exactly the
same!

• Step 1: Compute the loss on one
example at a time
• Training example is (x, y)
• x is vector of length d, y is scalar

• Step 2: Compute gradient of loss
with respect to all parameters
• Next class: Compute gradient

automatically with backpropagation.
Easy if each building block is
differentiable!

• Step 3: Update all parameters with
gradient descent update rule

44

Linear Layer 2
din=dhidden, dout=1
Params: w2, b2

Output: loss

MSELoss Layer
z = (ypred – ytrue)2

Input x

Input y

Sigmoid Layer

Linear Layer 1
din=d, dout=dhidden

Params: w1, b1N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Summary: Deep Learning as Building Blocks

• Power of deep learning: You can
stack building blocks together any
way you want
• No “right” or “wrong” architecture,

just different design decisions

• Best architecture choice depends on
the task and data

• Endless possibilities for new
architectures

45

46

Method for
learning features

from data

Powerful family
of non-linear

functions

Set of building
blocks to create
complex models

	Default Section
	Slide 1: Introduction to Neural Networks
	Slide 2: Review: Linear Models
	Slide 3: Review: Linear Models
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: A (toy) self-driving car example
	Slide 11: A (toy) self-driving car example
	Slide 12: A (toy) self-driving car example
	Slide 13: Feature learning
	Slide 14: 2-layer Neural Network, Regression
	Slide 15: 2-layer Neural Network, Binary Classification
	Slide 16: 2-layer Neural Network, Multi-Class Classification
	Slide 17: Feature Learning with Neural Networks
	Slide 18: Feature Learning with Neural Networks
	Slide 19: Feature Learning with Neural Networks
	Slide 20: Feature Learning with Neural Networks
	Slide 21: Feature Learning with Neural Networks
	Slide 22: Summary: Neural Networks as Feature Learners
	Slide 23: Announcements
	Slide 24
	Slide 25: Neural Networks are Non-linear Functions
	Slide 26: 2-layer Neural Network, Regression
	Slide 27: 2-layer Neural Network in Matrix Form
	Slide 28: Training Neural Networks
	Slide 29: Training Neural Networks
	Slide 30: Importance of “Non-linearities”
	Slide 31: Options for Non-linearities
	Slide 32: Non-linearities make NN’s more expressive
	Slide 33: Universal Approximation
	Slide 34: Summary: Neural Networks as Non-linear Functions
	Slide 35: Multi-Layer Perceptron (MLP)
	Slide 36
	Slide 37: Deep Learning as a Set of Building Blocks
	Slide 38: The Basic “Building Blocks”
	Slide 39: The Basic “Building Blocks”
	Slide 40: The Basic “Building Blocks”
	Slide 41: The Basic “Building Blocks”
	Slide 42: Building Linear Regression Training Loop
	Slide 43: Building Linear Regression Training Loop
	Slide 44: Building a 2-layer MLP for Regression
	Slide 45: Summary: Deep Learning as Building Blocks
	Slide 46

