Generative Classifiers & Naïve Bayes

Robin Jia USC CSCI 467, Spring 2024 January 30, 2024

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u>	Binary Classification	Multiclass classification
	y is a real number	y ∈ {+1, -1}	y ∈ {1, 2,, C}

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	Binary Classification y ∈ {+1, -1}	Multiclass classification y ∈ {1, 2,, C}
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)

	Linear Regressn	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	Binary Classification y ∈ {+1, -1}	Multiclass classification y ∈ {1, 2,, C}
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ²) Mean (Depends Variance on w) (constant)	O(7) VC 7	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)^{\top}}x)}{\sum_{k=1}^{C} \exp(w^{(k)^{\top}}x)}}_{\text{Normalizes to probability distribution}}$

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	Binary Classification y ∈ {+1, -1}	Multiclass classification y ∈ {1, 2,, C}
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ²) Mean (Depends Variance on w) (constant)	$p(y = 1 \mid x) = \sigma(w^{\top}x)$ Plot of $\sigma(z)$ vs. z	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)^\top}x)}{\sum_{k=1}^{C} \exp(w^{(k)^\top}x)}}_{\text{Normalizes to probability distribution}}$
Loss function (measures how bad any choice of parameters is)	Derive using Principle of Maximum Likelihood Estimation (MLE) Want to maximize probability of data = $\prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; w)$ Same as minimizing negative log-likelihood = $\sum_{i=1}^n -\log p(y^{(i)} \mid x^{(i)}; w)$		

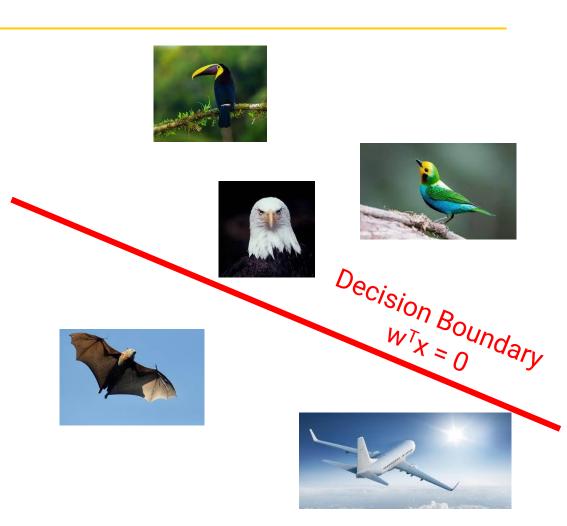
	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	Binary Classification y ∈ {+1, -1}	Multiclass classification y ∈ {1, 2,, C}
Parameters (what to learn)			w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ²) Mean (Depends Variance on w) (constant)	$p(y = 1 \mid x) = \sigma(w^{\top}x)$ Plot of $\sigma(z)$ vs. z	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)^\top}x)}{\sum_{k=1}^C \exp(w^{(k)^\top}x)}}_{\text{Normalizes to probability distribution}}$
Loss function (measures how bad any choice of parameters is)	Derive using Principle of Maximum Likelihood Estimation (MLE) Want to maximize probability of data = $\prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; w)$ Same as minimizing negative log-likelihood = $\sum_{i=1}^n -\log p(y^{(i)} \mid x^{(i)}; w)$		
How to minimize loss	Gradient Descent or Normal Equations		

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Discriminative Classifiers

- Train a model with parameters w to model p(y|x)
 - Logistic regression: $p(y=1|x) = \sigma(w^Tx)$
- Note: We **do not** attempt to model p(x)!
 - **Given** an image *x*, classifier predicts whether it is a bird or not
 - Model does not try to describe what an image of a bird actually is
 - Only has to find some features that discriminate between birds and non-birds
- Methods like logistic regression & softmax regression are called "discriminative classifiers"



Today: Generative classifiers

- Instead of modeling p(y|x), model the entire joint distribution p(x, y) as the product p(y) * p(x|y)
 - p(y): How often does each label occur? Easy
 - p(x/y): What is the space of all possible x's that have the label y? Can be complex

Prior: 25% of images are birds

If y=bird, If y=not bird, all possible x's include... all possible x's include...

Predicting with a Generative Classifier

- Suppose we have adequately learned p(y) and p(x|y)
- At test time, we get an input x
- How to predict? Bayes Rule

Prediction of label given input $p(y \mid x) = p(y) p(x \mid y)$ Model estimates these p(x) = p(x) Just for normalization

$$p(x) = \sum_{j} p(y=j)p(x \mid y=j)$$

Prior: 25% of images are birds

If y=bird, If y=not bird, all possible x's include...

Test input

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Setting: Text Classification

- Each input x is a document
 - Documents can have different numbers of words
 - $x^{(i)}_{j}$ is j-th word of i-th training example
- Each training example has corresponding label y

Training Data (sentiment analysis)

i	y (i)	X (i)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Test Data

x^{test} = "great directing"

Training a generative classifier

- We have to model two things
 - p(y): For each label y, what is the probability of y occurring?
 - p(x|y): For each label y, what corresponding x's are likely to appear?

Training Data

i	y (i)	X (i)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Modeling p(y)

- Modeling p(y) is easy: Just count how often each y appears!
- Let C be the number of possible classes
- Our model learns model parameter $\pi_i = P(y=j)$ for each possible j
- Learning: $\pi_i = count(y=j)/n$
 - count(y=j): how often y=j in training data
 - *n*: number of training examples
 - Justification: Maximum likelihood estimate (same as HW0 coin flip problem)

Training Data

i	y (i)	$\chi^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

In this dataset: $y \in \{+1, -1\}$ so **C=2**

5 training examples, so **n=5** y=+1 occurs 3 times, so $\pi_1 = 3/5 = 0.6$ y=-1 occurs 2 times, so $\pi_{-1} = 2/5 = 0.4$

Training a generative classifier

- We have to model two things
 - p(y): For each label y, what is the probability of y occurring?
 - p(x|y): For each label y, what corresponding x's are likely to appear?
 - This is much harder because x's are usually very complex objects
 - Different generative classification methods do different things
 - Today: Naïve Bayes method

Training Data

i	y (i)	X (i)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Modeling p(x|y) with Naïve Bayes

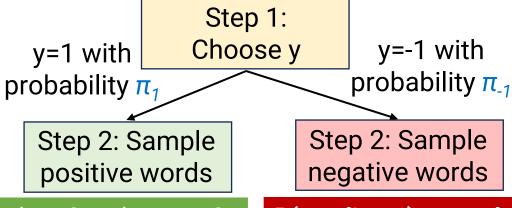
- Idea: Make a simplifying assumption about p(x|y) to make it possible to estimate
- Naïve Bayes assumption: Each word of the document x is conditionally independent given label y:

$$p(x \mid y) = \prod_{j=1}^{d} p(x_j \mid y)$$

- "Once label is chosen, each word is sampled independently"
- Note: This assumption does not have to be true (it definitely isn't), just has to be "close enough" so that classifier makes reasonable predictions

The Naïve Bayes Assumption

- Naïve Bayes posits its own probabilistic story about how the data was generated
- Step 1: Each $y^{(i)}$ was sampled from the prior distribution p(y)
 - "First, decide to either write a positive or negative review"
- Step 2: Each word in $x^{(i)}$ was sampled independently from the word distribution for label $y^{(i)}$
 - "If you decided to be positive, write the document by randomly sampling positive-sounding words"
 - "If you decided to be negative, write the document by randomly sampling negative-sounding words"
 - Each word is independent when conditioning on y
- Models the entire process of generating x and y



P(word y=1)	word
0.0050	great
0.0042	the
0.0035	good
0.0032	movie
•••	•••

"movie good the great score..."

P(word y=-1)	word
0.0054	bad
0.0045	movie
0.0041	worst
0.0034	is
	•••

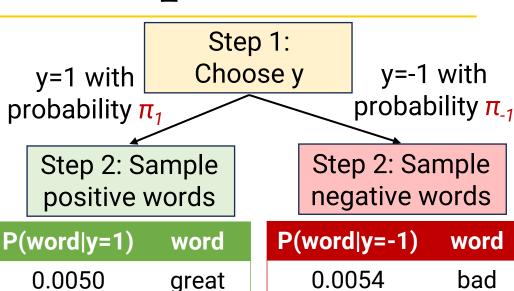
"worst acting is movie bad..."

Why is the Naïve Bayes Assumption OK?

- Clearly, documents generated in this way don't look very realistic!
- Why is this OK?
 - We don't need our p(x|y) to actually generate good documents
 - We just need it to be reasonable enough so that when given a real document x,

p(x|true y) > p(x|other y)

 Can be bad at modeling all the complex things that aren't related to y (grammar, writing style, etc.)



the

good

movie

•••	•••	
"movie	good the	9
great	score"	

0.0042

0.0035

0.0032

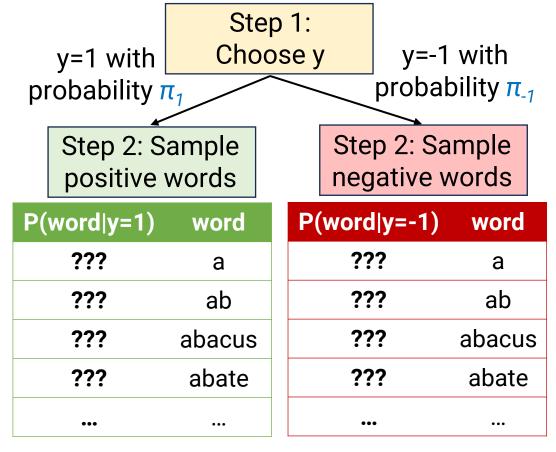
0.0041	is
0.0034	worst
•••	•••
"worst acting is	

0.0045

"worst acting is movie bad..."

movie

- Let V ("vocabulary") denote the set of words in the dictionary
- Model learns parameter $\tau_{wi} = P(w|y=j)$
 - For each word w in V
 - For each possible label j
 - Total of |V| * C parameters to learn
- How to learn? Just count!
 - For each word w and label j, learn: $\tau_{wj} = \underbrace{[\#occurrences\ of\ w\ when\ y=j]}_{[total\ words\ when\ y=j]}$
 - Again justified by MLE
 - Note: This formula has a flaw, which we will fix later



Learning goal: Estimate all the ???'s

Training Data

i	y ⁽ⁱ⁾	$\chi^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1

Parameters to learn

τ _{w,1}	word w
???	acting
???	and
???	amazing
???	directing
???	great
???	movie
???	score
???	terrible

word w
acting
and
amazing
directing
great
movie
score
terrible

Training Data

i	y ⁽ⁱ⁾	$\boldsymbol{\chi}^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1
- Count each word and divide by total

Parameters to learn

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
???	acting
???	and
???	amazing
???	directing
???	great
???	movie
???	score
???	terrible

Training Data

i	y ⁽ⁱ⁾	$\chi^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1
- Count each word and divide by total
- Repeat for y=-1 (3 total words)

Parameters to learn

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
0	acting
0	and
0	amazing
1/3	directing
0	great
0	movie
0	score
2/3	terrible

Predicting with Naïve Bayes

- Given test example x^{test} = "great score"
- Compute p(x, y=+1)
 - = p(y=+1) * p(x|y=+1)
 - = p(y=+1) * p("great"|y=+1) * p("score"|y=+1)
 - = 3/5 * 2/7 * 1/7 = 0.0245
- Compute p(x, y=-1)
 - = p(y=-1) * p(x|y=-1)
 - = p(y=-1) * p("great"|y=-1) * p("score"|y=-1)
 - = 2/5 * 0 * 0 = 0
- By Bayes Rule:
 - P(y=+1|x) = 0.0245/(0.0245+0) = 1
 - Model is sure that y=+1, so predict +1
 - Always predict y with largest p(x, y)

Learned Parameters

$$\pi_1 = 3/5$$

$$\pi_{-1} = 2/5$$

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
0	acting
0	and
0	amazing
1/3	directing
0	great
0	movie
0	score
2/3	terrible

Announcements

- HW1 out, due next Tuesday
- HW0 grades returned
 - Regrades will be open for 1 more week
 - Check blackboard for solutions before asking for regrade
 - In general: will keep regrades open for 1 week after returning grades
- Friday section: Follow-up to last Thursday's class
 - Cross-validation: Another way to evaluate on held-out data
 - Choosing an appropriate evaluation metric

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Problem #1: Too Many Zeroes

- Given test example x^{test} = "great directing"
- Compute p(x, y=+1)
 - = p(y=+1) * p(x|y=+1)
 - = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1)
 - = 3/5 * 2/7 * 0 = 0
- Compute p(x, y=-1)
 - = p(y=-1) * p(x|y=-1)
 - = p(y=-1) * p("great"|y=-1) * p("directing"|y=-1)
 - = 2/5 * 0 * 1/3 = 0
- By Bayes Rule:
 - P(y=+1|x) = 0/(0+0) = NaN
 - Model thinks this x^{test} is impossible!

Learned Parameters

$$\pi_1 = 3/5$$

$$\pi_{-1} = 2/5$$

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
0	acting
0	and
0	amazing
1/3	directing
0	great
0	movie
0	score
2/3	terrible

Avoiding Zeroes with Laplace Smoothing

- Problem: Assign probability of 0 to many (word, label) pairs
- Solution: Laplace Smoothing
 - Imagine that every (word, label) pair was seem an additional λ times
 - λ is a new hyperparameter
 - New formula:

 $\tau_{wy} = \underline{[\#occurrences of w when y=j] + \lambda}$ [total words when y=j] + |V| * \lambda

Parameters to learn

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
0	acting
0	and
0	amazing
1/3	directing
0	great
0	movie
0	score
2/3	terrible

Add λ for each word in V, so total # of imaginary counts is $|V| * \lambda$

Laplace Smoothing Example

Training Data

i	y (i)	X (i)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Parameters to learn

τ _{w,1}	word w
1/7	acting
1/7	and
1/7	amazing
0	directing
2/7	great
1/7	movie
1/7	score
0	terrible

τ _{w,-1}	word w
0	acting
0	and
0	amazing
1/3	directing
0	great
0	movie
0	score
2/3	terrible

With no Laplace Smoothing

Laplace Smoothing Example

Training Data

i	y ⁽ⁱ⁾	$\chi^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

$$\tau_{wy} = \frac{[\#occurrences of w when y=j] + \lambda}{[total words when y=j] + |V| * \lambda}$$

Parameters to learn

τ _{w,1}	word w
(1+1)/(7+8)	acting
(1+1)/(7+8)	and
(1+1)/(7+8)	amazing
(0+1)/(7+8)	directing
(2+1)/(7+8)	great
(1+1)/(7+8)	movie
(1+1)/(7+8)	score
(0+1)/(7+8)	terrible

τ _{w,-1}	word w
(0+1)/(3+8)	acting
(0+1)/(3+8)	and
(0+1)/(3+8)	amazing
(1+1)/(3+8)	directing
(0+1)/(3+8)	great
(0+1)/(3+8)	movie
(0+1)/(3+8)	score
(2+1)/(3+8)	terrible

Laplace Smoothing Example

Training Data

i	y ⁽ⁱ⁾	$\chi^{(i)}$
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

$$\tau_{wy} = \frac{[\#occurrences of w when y=j] + \lambda}{[total words when y=j] + |V| * \lambda}$$

Parameters to learn

τ _{w,1}	word w
2/15	acting
2/15	and
2/15	amazing
1/15	directing
3/15	great
2/15	movie
2/15	score
1/15	terrible

τ _{w,-1}	word w
1/11	acting
1/11	and
1/11	amazing
2/11	directing
1/11	great
1/11	movie
1/11	score
3/11	terrible

Laplace Smoothing Avoids Zeroes

- Given test example x^{test} = "great directing"
- Compute p(x, y=+1)

```
= p(y=+1) * p(x|y=+1)
```

- = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1)
- = 3/5 * **3/15** * **1/15** = **0.0080**
- Compute p(x, y=-1)

$$= p(y=-1) * p(x|y=-1)$$

$$= p(y=-1) * p("great"|y=-1) * p("directing"|y=-1)$$

- = 2/5 * **1/11 * 2/11**= **0.0066**
- By Bayes Rule:
 - P(y=+1|x) = 0.0080/(0.0080+0.0066) = .595
 - Model thinks y=+1 is more likely

Learned Parameters

$$\pi_1 = 3/5$$

$$\pi_{-1} = 2/5$$

τ _{w,1}	word w
2/15	acting
2/15	and
2/15	amazing
1/15	directing
3/15	great
2/15	movie
2/15	score
1/15	terrible

τ _{w,-1}	word w
1/11	acting
1/11	and
1/11	amazing
2/11	directing
1/11	great
1/11	movie
1/11	score
3/11	terrible

Problem #2: Numerical Underflow

- Given **long** test example x^{test} = "great directing and acting, amazing score, ..."
- Compute p(x, y=+1):

$$= p(y=+1) * p(x|y=+1)$$

- = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1) * p("and"|y=+1) * p("acting"|y=+1) *...
- If you actually try to do this on a computer, you will get 0!
 - Multiplying many small numbers results in numerical underflow
 - Result is so small that it becomes 0

Learned Parameters

$$\pi_1 = 3/5$$

$$\pi_{-1} = 2/5$$

τ _{w,1}	word w
2/15	acting
2/15	and
2/15	amazing
1/15	directing
3/15	great
2/15	movie
2/15	score
1/15	terrible

word w
acting
and
amazing
directing
great
movie
score
terrible

Use Log Space to Avoid Underflow

- Given long test example x^{test} = "great directing and acting, amazing score, ..."
- Instead compute $\log p(x, y=+1)$:
 - $= \log p(y=+1) + \log p(x|y=+1)$
 - = $\log p(y=+1) + \log p("great"|y=+1) + \log p("directing"|y=+1) + \log p("and"|y=+1) + \log p("acting"|y=+1) + ...$
 - This will not underflow, just adding together some negative numbers
- At test time: compute log p(x, y=j) for each j, choose the j with largest value

Learned Parameters

$$\pi_1 = 3/5$$

$$\pi_{-1} = 2/5$$

τ _{w,1}	word w	
2/15	acting	
2/15	and	
2/15	amazing	
1/15	directing	
3/15	great	
2/15	movie	
2/15	score	
1/15	terrible	

$ au_{w,-1}$	word w	
1/11	acting	
1/11	and	
1/11	amazing	
2/11	directing	
1/11	great	
1/11	movie	
1/11	score	
3/11	terrible	

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Naïve Bayes for Feature Vectors

Text Classification Setting

- Each input x is a document
 - Documents can have different numbers of words
 - $x^{(i)}_{j}$ is j-th word of i-th training example
 - We made an implicit assumption that position of words does not matter—same distribution for 1st word of document, 2nd word, etc.

Feature Vector Setting

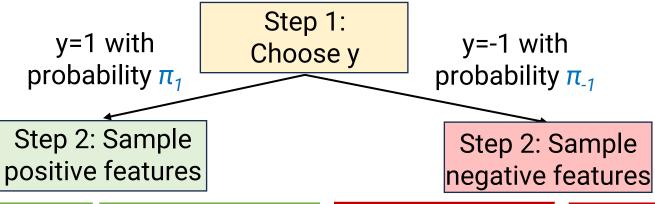
- Each input x is a feature vector
 - Each vector is of a fixed size d
 - $x^{(i)}_{j}$ is *j*-th feature of *i*-th training example
 - Each feature means something different! Can't treat them the same

Naïve Bayes for Feature Vectors

- Step 1: Each y⁽ⁱ⁾
 was sampled
 from the prior
 distribution p(y)
- Step 2: For eachj = 1, ..., d:

Feature $x^{(i)}_{j}$ was sampled independently from the **feature-specific** distribution for label $y^{(i)}$

Task: Predict if user will like album (y) given genre (x_1) and decade (x_2)



$P(x_1 y=1)$	genre	$P(x_2 y=1)$	decade
0.31	rock	0.33	2010's
0.24	pop	0.28	2020's
0.23	hip hop	0.21	2000's
•••	•••	•••	•••

$P(x_1 y=-1)$	genre
0.24	country
0.22	rock
0.18	pop
	•••

$P(x_2 y=-1)$	decade
0.35	2020's
0.24	2010's
0.15	1990's
•••	•••

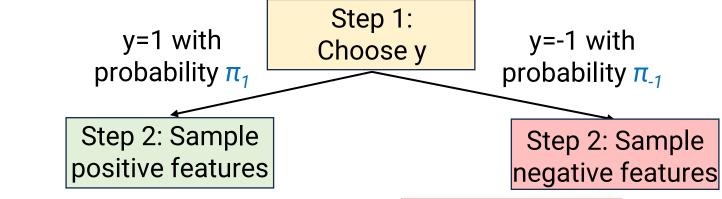
Most likely x = (rock, 2010's)

Most likely x = (country, 2020's)

Naïve Bayes for Feature Vectors

- How to learn?
 Count
 occurrences for
 each feature
 - E.g., Count how many "liked" albums come from each genre
- Apply Laplace Smoothing to all (label, feature) pairs
 - E.g., Imagine 1
 additional album
 of each genre
 was liked

Task: Predict if user will like album (y) given genre (x_1) and decade (x_2)



$P(x_1 y=1)$	genre	$P(x_2 y=1)$	decade
???	country	???	1950's
???	hip hop	???	1960's
???	pop	???	1970's
•••	•••	•••	•••

$P(x_1 y=-1)$	genre
???	country
???	hip hop
???	pop
•••	•••

$P(x_2 y=-1)$	decade
???	1950's
???	1960's
???	1970's
•••	•••

Discriminative vs. Generative Comparison

Logistic/Softmax Regression

- Usually higher accuracy, especially with large dataset
 - P(y|x) usually simpler to learn than P(x|y)
- Can do arbitrary feature
 processing. Input features can be
 related to each other, since we
 don't make any conditional
 independence assumptions

Naïve Bayes

- Learning is easier—no gradient descent, just count!
- Can handle missing input features—just ignore them when computing P(x|y)
- Easy to make small updates to the model
 - New training example? Just increment counts
 - New label? Fit P(x|y=new label), everything else stays the same

Summary: Generative Classifiers, Naïve Bayes

- Generative Classifier: Model p(y) and p(x|y)
 - Modeling p(y) is easy (just count how often each label occurs)
 - Modeling p(x|y) is hard
 - Naïve Bayes assumption: Each word/feature of x is conditionally independent given y
 - This makes modeling p(x|y) easy: Just count!
 - Need to be careful to avoid zeroes
 - Laplace Smoothing to avoid zero probability of unseen (word, label) pairs
 - Work in log space to avoid numerical underflow
 - Use Bayes Rule to compute prediction p(y|x) from p(y) and p(x|y)