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Today’s Plan

• What is machine learning?

• Where is machine learning used?

• Course Logistics

• Bird’s Eye View of the Schedule
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The Case for Machine Learning
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Checking if location is in national park: 
Can be programmed directly!

https://xkcd.com/1425/ 

https://xkcd.com/1425/


The Case for Machine Learning
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Checking if photo is a bird…

How to define “birdness” in a program???

Hard to define directly—instead, learn from data!

https://xkcd.com/1425/ 

https://xkcd.com/1425/


Learning from Data

1. I don’t know how to solve my 
problem directly

2. But I can obtain a dataset that 
describes what I want my 
computer to do.

3. So, I will write a program 
that learns the desired behavior 
from the data.

6

Input Output

Bird

Bird

Not Bird

Bird

Not Bird



Learning by making adjustments

• Suppose I’m 
building a lock 
to my door
• My key should 

open the lock

• All other keys 
should not

• What if there’s 
a mistake?
• Adjust the lock 

until it works!
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Learning by making adjustments

• What if there’s a 
mistake?
• Adjust the lock 

until it works!
• Lock is the 

machine 
learning model 
that we learn

• Size, shape, etc. 
of lock are 
model 
“parameters” 
that govern 
model behavior
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Computer Vision

• ImageNet dataset: 14M 
images, 1000 labels
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Progress on ImageNet

11Source: https://www.eff.org/files/AI-progress-metrics.html 

• 2012: AlexNet 
wins ImageNet 
challenge, marks 
start of deep 
learning era

• 2016: Machine 
learning surpasses 
human accuracy

https://www.eff.org/files/AI-progress-metrics.html


Image Generation

12Generated by OpenAI’s Dall-E 2. Source: https://qz.com/2176389/the-best-examples-of-dall-e-2s-strange-beautiful-ai-art 

Teddy bears working on new 
AI research on the moon in the 

1980s.

A raccoon playing tennis at 
Wimbledon in the 1990s.

An ancient Egyptian painting 
depicting an argument over 

whose turn it is to take out the 
trash.

https://qz.com/2176389/the-best-examples-of-dall-e-2s-strange-beautiful-ai-art


Medicine

• Task: Predict probability of 
different findings from chest X-
Ray

• Machine learning models can be 
more accurate than a trained 
radiologist
• (In terms of matching a consensus 

decided by group of other 
radiologists)

13Source: CheXpert dataset. https://stanfordmlgroup.github.io/competitions/chexpert/ 

https://stanfordmlgroup.github.io/competitions/chexpert/


Sustainability

• Producing fine-grained 
maps of poverty based 
on satellite imagery
• E.g. for policy decisions 

or help NGO’s distribute 
resources

14Source: https://www.science.org/content/article/satellite-images-can-map-poverty 

https://www.science.org/content/article/satellite-images-can-map-poverty


Machine Translation

• Topic of AI research since the 
1950’s
• (Cold War era)

• Simple word-by-word translation 
doesn’t work!

• Today: Modern machine 
translation systems all use 
machine learning
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“The spirit is willing, but the 
flesh is weak.”

Translate to Russian and back

“The vodka is good, but the 
meat is rotten.”

https://www.nytimes.com/1983/04/28/business/technology-the-computer-as-translator.html 

https://www.nytimes.com/1983/04/28/business/technology-the-computer-as-translator.html


Language Models

• Step 1: Acquire as much 
text data from the internet 
as possible

• Step 2: Train a model that 
repeatedly predicts the next 
word given previous words

• Step 3: ???

16https://twitter.com/karpathy/status/1600214083206193153 

https://twitter.com/karpathy/status/1600214083206193153


Game-Playing

• 2017: AlphaGo 
defeats Go 
champion Lee 
Sedol

• How? Self-play
• Generate data 

on what 
makes a good 
move by 
playing itself 
many times

17



Robotics

• Socially assistive 
robots for children with 
autism spectrum 
disorder
• Task 1: Monitor 

attention (eye gaze)

• Task 2: Choose 
questions to maintain 
attention

18https://uscinteractionlab.web.app/project/expeditions 

https://uscinteractionlab.web.app/project/expeditions
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Course staff introduction

• Instructor: Robin Jia

• TA’s: Ameya Godbole, Soumya Sanyal

• CP’s: Vishesh Agrawal, Ryan Wang, Lorena Yan, Wenyang Zhang

20



Logistics

• Website: https://usc-csci467.github.io/ 
• See calendar for office hours & CP peer mentoring sessions

• Instructor & TA’s: Regular office hours every week

• CP’s: Special drop-in peer mentoring before each HW due date/exam

• Discussions on https://piazza.com/class/lr3sh10u88m3bq 
• Sign-up link on website 

• Lecture format
• Some whiteboard/iPad, some lecture slides

• Lecture notes cover material of iPad lectures

• Will post lecture slides before class for slideshow days

• Announcements in middle
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https://usc-csci467.github.io/
https://piazza.com/class/lr3sh10u88m3bq


Prerequisites

• Algorithms: CSCI 270
• Nothing specific but proxy for general ability to reason about algorithms

• Linear Algebra: Math 225
• Lots of vector & matrix operations, vector geometry

• Probability: EE 364/Math 407/BUAD 310
• Lots of probability notation and probabilistic processes
• Bayes Rule, conditional probability/expectation
• Basic probability distributions (Gaussian, Bernoulli, etc.)

• Calculus
• Single variable calculus assumed
• Some basic multivariable calculus will be introduced

• Programming: Familiarity with python

• Suggested resources for review on the course website
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Section

• Fridays 3:00-3:50pm in DMC 102

• This Friday: Review of probability & linear algebra, some notes on 
gradients

• Usually led by one of the TA’s, this week you get me
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Grading Breakdown

• Homework Assignments (40%)
• Homework 0 (4%)

• Homeworks 1-4 (9% each)

• Final Project (20%)

• Exams (40%)
• Midterm (80 minutes in-class, March 7)

• Final Exam (May 7, 2:00-4:00pm)
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Homework

• Homework 0 is out, due January 18 (at 11:59pm)
• Main purpose is to exercise prerequisites, plus start on some material we’ll 

learn in the next class

• Submit on Gradescope
• Separate places for you to submit PDF write-up and code

• LaTeX is highly recommended
• Will be required for final project
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Final Project

• Can be done individually or in groups of up to 3

• Chance to apply machine learning techniques to a problem of your 
choice
• Finding an appropriate dataset

• Establishing baselines

• Evaluating your method’s success

• Analyzing its successes and failures

• Timeline
• Proposal (due February 13): Is this feasible? Does the right data exist?

• Midterm report (due March 26): Halfway point for running experiments

• Final report (due May 3)
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Late Days

• You have 6 late days you can spend (in integer amounts) on any 
assignment except the final report

• Each late day spent extends the deadline by 24 hours

• Can use at most 3 late days per assignment

• To extend deadline of proposal or midterm report, all group 
members must spend late day(s)

27



Academic Integrity

• You may discuss homework problems at a high level with other 
students

• You may not…
• Look at another student’s solutions/share your solutions

• Obtain homework solutions from any online source

• Use any AI tools to help you write your solutions or code

• Upload materials from this course online

28
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A Bird’s Eye View

• Supervised learning
• Linear models (Weeks 1-5)

• Deep learning (Weeks 6-10)

• Unsupervised learning (Weeks 11-12)

• Reinforcement learning (Weeks 12-13)

• Additional topics (Weeks 14-15)

• Compared with CSCI 360: More in-
depth, more mathematical

30

CSCI 360: ~2 weeks

CSCI 360: ~1 week

CSCI 360: ~0.5 weeks

CSCI 360: ~0.5 weeks



Supervised Learning

Regression

• Predicting a real number

• Example: Weather prediction

Classification

• Predicting a “class” or “label” 
from a discrete set

• Example: Species classification

31



Linear Models

• Idea: Only use linear function of 
input features

• Advantages
• Simple

• Efficient

• Comes with provable guarantees

• Often good choice for small 
datasets

• Disadvantages
• Lack of expressivity*

• Harder to take advantage of large 
datasets

32Source: https://mlcourse.ai/book/topic04/topic4_linear_models_part2_logit_likelihood_learning.html 

https://mlcourse.ai/book/topic04/topic4_linear_models_part2_logit_likelihood_learning.html


Deep Learning

• Idea: Learn meaningful 
vector representations of 
inputs by composing non-
linear operations

• Computer vision: 
Convolutional Neural 
Networks

• Natural Language 
Processing: Recurrent 
Neural Networks, 
Transformers

33Source: PML, https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/ 

https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/


Unsupervised Learning

• Clustering: Finding 
subpopulations 
within datasets

• Dimensionality 
Reduction: 
Visualizing high-
dimensional data

34Source: https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c, 
https://medium.com/swlh/a-gentle-introduction-into-the-application-of-principal-component-analysis-pca-in-genomics-269026453295  

https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c
https://medium.com/swlh/a-gentle-introduction-into-the-application-of-principal-component-analysis-pca-in-genomics-269026453295


Reinforcement Learning

• Bandit problems: 
Trading off 
exploration vs. 
exploitation

• Reinforcement 
Learning: 
Learning how to 
act to maximize 
rewards
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Additional Topics

• Adversarial Examples: 
Hidden ways machine 
learning models can 
be fooled

• Fairness: How to 
ensure responsible 
deployment of 
machine learning 
systems?

36Source: Goodfellow et al. (2014), https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing   

https://arxiv.org/abs/1412.6572
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Conclusion

• Machine Learning
• What? Getting computers to learn what to do from data

• Why? Sometimes we don’t know how to directly program the behavior we 
want

• Where? Images, medicine, sustainability, language, games, robotics, …

• Homework 0 due in 9 days!

• Next class: Linear Regression
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