
USC CSCI 467
Intro to Machine Learning

Assignment 4
Due: April 25, 2024, 11:59pm

Spring 2024
Instructor: Robin Jia

This assignment has 3 questions, for a total of 100 points. Make sure you also download the
hw4.zip file from the course website, and install the required libraries by running pip install -r

requirements.txt.
When submitting on Gradescope, note that you must make a submission both for the

written portion and programming portion. For the programming portion, upload the files
wordvec.py and qlearning.py with your completed solutions. (There is an “autograder” which
will not actually grade your code but it will run it, and should return 0 if it encountered an error
and 100 otherwise.) Please still include the output of your code in the PDF report when
requested in the problems.

Question 1: Word Vectors and PCA (40 points)
In this question, you will get some experience working with word vectors and implement PCA
to visualize word vectors in a low-dimensional space.

The starter code includes a file vocab.txt containing a list of common English words, and an
associated file vectors.npy containing 300-dimensional word vectors for each vocabulary word.
These word vectors were taken from a much larger list of word vectors trained with word2vec
on Google News articles (we extracted a subset to reduce runtime and disk usage; the full word
vector file is 3GB).

(a) (10 points) Similarity in word vector space captures various aspects of semantic similarity
(that is, similarity in word meaning). Let’s first write a function that takes in a given
word vector and finds the k most similar words. To define similarity between two words,
we will use the cosine similarity of their word vectors. Given two vectors u and v, the
cosine similarity is defined as

cossim(u, v) =
u⊤v

∥u∥∥v∥
.

Note that this is exactly equal to the cosine of the angle between vectors u and v. The
cosine similarity is thus always between −1 and 1; two vectors have similarity of 1 if and
only if they point in exactly the same direction.

Now implement find neighbors(). This function takes as input a list vocabulary of
n words, a matrix word vectors of shape n × d where the i-th row is the word vec-
tor for the i-th word in vocabulary, a d-dimensional vector query, and an integer k.
The function should return a list of k 2-tuples where each tuple is (neighbor word,

cosine similarity), and the words in the list are the k most similar words to query

sorted from most similar to least similar. You should not use a for-loop over the
entire vocabulary size. You may use a for loop that runs for k iterations, to generate
the final output list. Hint: The function numpy.argsort may be helpful.

When you’re ready, you can find the 10 nearest neighbors to a given word with

python3 wordvec.py neighbors -k 10 -q [word]

This will run your code using the word vector for the provided word as the query. If you
query the word cat, the top three neighbors should be cat, cats, dog, and cat should have
similarity of 1 with itself (since the cosine similarity between a vector and itself is always
1).

This content is protected and may not be shared, uploaded, or distributed. Page 1 of 5

(b) Now let’s take a look at some nearest neighbors for a few more words.

i. (2 points) query=disappointed: Some of the neighbors words have a similar meaning
to the disappointed, but others mean the opposite. Why do you think these other words
show up on the list? Hint: Try to think about some phrases where either disappointed
or a word with the opposite meaning could both fit.

ii. (2 points) query=bug: Bug is a polysemous word—it can have very different meanings
depending on the context. Use this fact to explain the nearest neighbors for bug. You
should notice three different senses of the word.

iii. (2 points) query=plate: Plate is also a polysemous word. In everyday conversation,
the most common meaning is something that holds food, so you might expect to
find neighbors like bowl or cup. However, the neighbors your code should output
are actually mostly related to baseball (e.g., mound, batter, catcher, bunt, infield).
Provide an explanation of this observation. Hint: Think about the dataset used to
train these word vectors.

iv. (2 points) Explore on your own and pick another word where you notice something
interesting or surprising about the nearest neighbors. Describe what you find.

(c) (5 points) Let vw denote the vector for word w. Another interesting thing you can do with
word vectors is define relationships between words. For example, the difference vman−vking
is similar to the difference vwoman − vqueen, i.e.

vman − vking ≈ vwoman − vqueen

because these pairs of words have a similar relationship between them. Because of this
fact, we can do vector arithmetic to complete the analogy “man is to king as woman is to
. . . ” First compute

vking − vman + vwoman

We know this should approximately equal the vector for the female equivalent to king. So,
we can search our set of word vectors for the word whose vector is closest to this vector
(in terms of cosine similarity).

Fill in the missing code in the function query relation. This function takes in three
words: head1, tail1, and head2. Your code will compute the query vector that can be
passed to find neighbors to find the best candidates to complete the analogy “head1 is
to tail1 as head2 is to. . . ”.

When you’re done, you should be able to answer relation queries by running:

python3 wordvec.py relation -q man,king,woman

If you have implemented this correctly, this should return queen.

(d) (3 points) Do your own exploration with other types of analogies. Find one other example
where the word vectors give you a good answer, and another example where they give you
a bad answer.

(e) (10 points) Now let’s visualize word vectors with PCA. Implement the function project 2d,
which takes in a matrix X of shape n × d, and returns a matrix of shape n × 2 by using
the top two principal components.

More specifically, to implement PCA you will need to do the following:

1. Mean-center the data. This means you compute µ, the average vector of all the rows
in X, and then subtract µ from each row in X. This makes the resulting matrix have
a mean row of 0.

This content is protected and may not be shared, uploaded, or distributed. Page 2 of 5

2. Compute the d× d covariance matrix Σ = X⊤X.

3. Use np.linalg.eig to compute the eigendecomposition of Σ. This function returns
the d eigenvalues and d eigenvectors of Σ; in particular, the i-th column of the
eigenvectors matrix is the eigenvector corresponding to the i-th eigenvalue. Note that
the eigenvalues are not guaranteed to be sorted in any order.

4. Locate the largest eigenvalue, which we will call λ1, and second-largest eigenvalue,
which we will call λ2. Let the corresponding eigenvectors be v1 and v2. Hint:
np.argsort will again be useful here.

5. For each row x of the mean-centered matrix X, compute the 2-dimensional projection
[x⊤v1, x

⊤v2]. This projects x onto v1 and v2, respectively. Return the n × 2 matrix
where the i-th row is the projection of the i-th row of X computed in this way.

(f) (4 points) Finally, let’s visualize some word vectors. Run

python3 wordvec.py visualize -f adjectives.txt

This will run your PCA code with the word vectors for the words in adjectives.txt. It
will plot the 2-dimensional projection of each word vector, where the x-axis will show the
first principal component (i.e., the projection onto v1) and the y-axis will show the second
principal component (i.e., the projection onto v2). It will also draw a line connecting every
pair of words, which in this file are an adjective in base form followed by the corresponding
superlative. Finally, it will write this figure to visual.png

Paste the resulting figure and answer the following questions:

• Which principal component primarily captures the difference between the base and
superlative form of each adjective?

• Which word vectors are close to each other in this visualization? Why does that make
sense?

Question 2: Q-Learning (20 points)
In this problem, you will implement Q-learning with a discrete state space. We will use the
Cartpole environment, in which a pole that rotates at its base is placed on top of a car. The
RL agent can choose to nudge the car left or right at each timestep, and the goal is to keep the
pole upright while keeping the car within the bounds of the environment for as long as possible.

We will be relying on the OpenAI Gym implementation of Cart Pole.1 There is an environment
(called env in the code) that the agent interacts with. At each timestep, the agent chooses an
action, and the environment tells it the new state, reward, and whether the current episode has
terminated (in the case of Cartpole, the episode terminates when the pole falls by at most 24◦

in either direction or the car moves too far to the left or right). In Cartpole, the agent gets a
reward of +1 for each timestep, which means the total (un-discounted) reward is equal to the
total number of timesteps the episode lasts. At the start of each episode, we call env.reset()
to reset back to a starting state.

The actual state space is continuous, defined by four variables: cart position, cart velocity, pole
angle, and pole angular velocity. To run tabular Q-learning, we discretize each variable into a
number of bins to get a discrete state space. We will then learn the Q-value for each pair of
discrete state and action via Q-learning. This code is already provided for you.

(a) (2 points) Run the baseline policy that just chooses a random action at each timestep:

1https://gymnasium.farama.org/environments/classic_control/cart_pole/

This content is protected and may not be shared, uploaded, or distributed. Page 3 of 5

https://gymnasium.farama.org/environments/classic_control/cart_pole/

python3 qlearning.py cartpole -a random

This should create an animation of 20 episodes using this random policy. How well does
the random policy do? What usually causes the episodes to end?

(b) (12 points) Now implement Q-learning. You will need to fill in code both in run qlearning()

to actually do Q-learning, as well as test-time code in run test to use the Q-values you’ve
learned to choose actions at test time. There is a total of three missing code blocks:

• While running Q-learning, you need to use ϵ-greedy exploration: with probability ϵ you
should choose a random action, (there is a helpful function env.action space.sample()

that samples a random action in the environment’s action space), and with probabil-
ity 1− ϵ you should choose the optimal action based on the current Q-values. There
are many ways to implement this; one way is to use the random.random() function,
which returns a uniformly random real number between 0 and 1.

• Then, after taking the action, you should update the Q-values for the previous state.
Remember to use the provided discount factor when doing the Q-learning update.

• Finally, in run test, you should not use ϵ-greedy, but instead always choose the best
action according to the learned Q-values.

When you’re ready, run Q-learning with 10,000 episodes and an ϵ of 0.1 for ϵ-greedy
exploration.

python3 qlearning.py cartpole -a qlearning -n 10000 -e 0.1

The average reward across Q-learning will be written to the file reward cartpole eps0.10.png.
Include this figure in your report. You should find that reward increases and by the end
you are consistently getting above 100 reward.

After running Q-learning, the code will once again show 20 episodes using the learned
policy (and turning off ϵ-greedy). How well does your learned policy do? Contrast its
behavior with the random policy.

(c) (3 points) You probably noticed that Q-learning got slower for the Cartpole problem (i.e.,
100 episodes took not very much time in the beginning, and took more time later on).
Provide an explanation of this.

(d) (3 points) Let’s test whether ϵ-greedy was necessary. Try again without ϵ-greedy, i.e.
ϵ = 0:

python3 qlearning.py cartpole -a qlearning -n 10000 -e 0.0

What happens to the learned policy and final reward?

Question 3: Adversarial Examples and Linear Classifiers (40 points)
In class we talked about how adversarial perturbations can fool state-of-the-art neural image
classifiers. This problem is not unique to neural networks—linear classifiers can also be at-
tacked! In this problem, we will work out a closed-form attack and defense strategy for linear
classifiers.

Suppose we have the following setting:

• We are doing a binary classification task of mapping an image x, represented as a d-
dimensional vector of pixels, to a label y ∈ {−1, 1}. (For example, if the images are
28× 28, d = 282 = 784.)

This content is protected and may not be shared, uploaded, or distributed. Page 4 of 5

• Our model is a linear classifier parameterized by a weight vector w ∈ Rd and bias term
b ∈ R. To make a prediction on input x, we compute w⊤x+ b and predict +1 if it is > 0,
and −1 otherwise.

• The loss we care about is the logistic loss. Given an example (x, y), the logistic loss for
parameters w and b is defined as ℓ(x, y;w, b) = − log σ(y · (w⊤x+ b)).

• The adversary is allowed to perturb each pixel of x by at most ϵ, for some ϵ > 0.

(a) (8 points) Suppose that the attacker uses the fast gradient sign method (FGSM) to attack
our model. Recall that in FGSM, the attacker first computes

g = ∇xℓ(x, y;w, b),

the gradient of the loss with respect to the input x (not the parameters). Derive the
formula for g in terms of x, y, w, and b. Hint: If you are stuck on differentiating log σ(·),
you can refer back to the lecture on logistic regression.

(b) (6 points) The next step for the attacker is to perturb x. Let z ∈ Rd denote the vector
that the attacker adds to x. For each component xj of x, they will add ϵ to xj if gj > 0,
and subtract ϵ from xj if gj < 0, and leaves xj unchanged if gj = 0. Based on your work
from the previous part, show that

zj = −ϵy · sgn(wj),

where sgn(a) denotes the “sign” of a, which is +1 if a > 0, −1 if a < 0, and 0 if a = 0.
Hint: You may use the fact that sgn(ab) = sgn(a) · sgn(b).

(c) (10 points) The adversary modifies the original input x to the perturbed input x+z. This
perturbed input is then fed to the model. Let ℓadv(x, y;w, b) denote the loss of the model
on the perturbed input x+ z. Show that this is equal to

ℓadv(x, y;w, b) = − log σ(y · (w⊤x+ b)− ϵ∥w∥1),

where ∥w∥1 denotes the L1 norm of w, i.e.

∥w∥1 =
d∑

j=1

|wj |.

(d) (6 points) By comparing the formula for ℓ(x+z, y;w, b) with the original loss ℓ(x, y;w, b),
show that the loss on the adversarially perturbed example is always higher than the loss
on the original example, as long as ∥w∥1 > 0. You may use the fact that log(a) and σ(a)
are both monotonically increasing functions in a.

(e) (10 points) Finally, we can use the formula in part (c) to train our model to do well
on adversarial perturbations. We can do this simply by running gradient descent on
ℓadv(x, y;w, b).

Derive the formulas for the gradient of ℓadv(w, b) with respect to both w of b. (Note that
for simplicity, we will just calculate the gradient of the loss on a single example, and not
an entire training dataset.) You can use sgn(v) for a vector v to denote the vector whose
i-th element is sgn(vi).

This content is protected and may not be shared, uploaded, or distributed. Page 5 of 5

