
USC CSCI 467
Intro to Machine Learning

Assignment 3
Due: April 9, 2024, 11:59pm

Spring 2024
Instructor: Robin Jia

This assignment has 3 questions, for a total of 100 points. Make sure you also download the
hw3.zip file from the course website.

When submitting on Gradescope, note that you must make a submission both for the
written portion and programming portion. For the programming portion, upload the files
backprop.py and kmeans.py with your completed solutions. (There is an “autograder” which will
not actually grade your code but it will run it, and should return 0 if it encountered an error and
100 otherwise.) Please still include the output of your code in the PDF report when
requested in the problems.

Question 1: Implementing Backpropagation (51 points)
In the last assignment, you implemented neural networks in Pytorch. This only required writing
code for the forward pass, since Pytorch does automatic differentiation by backpropagation for
you. In this assignment, you will delve deeper by writing your own backpropagation code and
using it to train both a logistic regression classifier and a neural network classifier.

Let’s look at the starter code in backprop.py. This contains the code from the backpropagation
lecture, with a couple small modifications. Before we talk about the modifications, let’s review
how the code works. Each Node object represents a node in the computation graph. In
Node. init (*args), a node is told what its child nodes are. It should:

• Store these child nodes, so that it can update the child nodes’ gradients in the backward
pass.

• Compute and store the value of this node given the values of the children. In other words,
this is performing the forward pass.

• Initialize the gradient of this node to be 0.

• Save a pointer to the topological order list for the current computation graph. This can
be gotten from any of the child nodes.

• Add the current node to this topological order.

Then, in Node.backward(), the node should perform the backward pass by updating the
gradient of each child node. The code assumes that self.grad, the gradient of the output
with respect to the current node, has been computed correctly. That gradient information
must get propagated back to the child nodes.

The modifications I’ve made to the lecture code are:

• I’ve changed all Node.value and Node.grad attributes to be numpy datatypes (e.g.
np.float64) rather than standard python floating point numbers. This prevents some
annoying type mismatch errors. In your implementation, remember to use numpy
datatypes and not python floats/ints.

• I’ve changed InputNode to accept a numpy array as an input, in addition to a normal
float. This will be useful when we start defining nodes that takes vectors and matrices
as inputs. Note that if the input is a vector or matrix, self.grad should be a vector or
matrix of the same shape, initialized to all zeros. This is because self.grad stores the
gradient of the output of the computation graph (which is always a scalar) with respect

This content is protected and may not be shared, uploaded, or distributed. Page 1 of 8



to the current node. The gradient is just the vector or matrix of partial derivatives with
respect to each entry of the node.

• I’ve changed ReluNode and AddNode to work even if the input(s) and output are vectors.
In both cases, the operations are element-wise, so the backpropagation rules don’t really
change; we just have to allow for the gradient objects to be vectors.

• I’ve added a ConstantMulNode class, which is a slight variation on MulNode. You may
recall that MulNode takes in two nodes and multiplies them. ConstantMulNode takes in
one node and multiplies it by a fixed constant. For example, if you have a node called
n, you can compute 5n by calling ConstantMulNode(n, 5) (in this way, it is similar to
PowerNode). If you wanted to do the same thing with MulNode, you would have to write
MulNode(n, InputNode(5)) which is a bit uglier.

(a) (2 points) We will start by writing a node for the function log(x) (the base of the log is
e). In the forward pass, our node will take in an input x and produce output u = log(x).
In the backward pass, our node gets told that ∂y

∂u = g for some value g, where y is the final

output of the computation graph. We must then figure out how to update ∂y
∂x , the partial

derivative of our child with respect to the final output.

Write the formula for the backpropagation update rule to ∂y
∂x in terms of g and x. It should

have the form:
∂y

∂x
+ = [· · · ]

Review the lecture slides on backpropagation if you don’t remember why we increment
the partial derivative, instead of just setting it to a value.

(b) (3 points) Using your formula from the previous part, implement the LogNode class. Your
implementation only needs to handle the case where the input and output are scalars.

(c) (2 points) Next we will write a node for σ(x), the sigmoid function used in logistic regres-
sion. Our node takes in input x and produces output u = σ(x), where

σ(x) =
1

1 + e−x
.

The derivative of σ(x) can be written in terms of σ(x) itself. Write the formula for the
backpropagation update rule to ∂y

∂x in terms of g and u, where g is the already-computed

value of ∂y
∂u .

(d) (2 points) I could have also asked you to write the formula in terms of g and x. What is
the computational advantage to writing the formula in terms of u instead? (If you’re not
sure, try implementing SigmoidNode first and then think about what would change if you
used a formula in terms of g and x.)

(e) (3 points) Using the formula you wrote, implement the SigmoidNode class. To compute
σ(x), you should use the sigmoid function imported at the top of the file. (This will give
numerically stable results when x is very large or very small). Again, your implementation
only needs to handle the case where the input and output are scalars.

(f) (2 points) To implement logistic regression, we will need one more type of node: a dot
product. The node will take in two vectors, x and v, and produce output u = x⊤v.

Write the formula for the backpropagation update rules to ∇xy and ∇vy in terms of x, v,
u, and g, where g is the already-computed value of ∂y

∂u . I’m using the notation ∇xy instead

of ∂y
∂x just because x is now a vector and not a scalar; conceptually these are analogous,

This content is protected and may not be shared, uploaded, or distributed. Page 2 of 8



since the gradient is just the vector of partial derivatives with respect to each component
of x. (Note: your expressions might only use a subset of x, v, and u, but you’re free to
use any of them in your expression.)

(g) (3 points) Using your formulas from the previous part, implement the DotNode class.

(h) (6 points) We now have all the components we need to implement logistic regression! But
before we do, it’s a good idea to implement a gradient check to make sure our backpropa-
gation code is correct. To test our LogNode, SigmoidNode, and DotNode implementations
simultaneously, let’s use the function

f(a, b, c) = log(a⊤b)− 3σ(a⊤c),

where a, b, and c are all vectors in R2.

Recall from lecture that computing the numerical gradient means you perturb each coor-
dinate of the input by a small number ϵ (you should use EPSILON = 1e-8 as defined at the
top of backprop.py), measure the change in f , and use that to approximate the partial
derivative with respect to that coordinate. You can look at the lecture demo code as a
reference.

Fill in the missing code inside gradient check 1 to:

• Compute f(a, b, c) using the new Node subclasses you just implemented

• Numerically the gradient of f with respect to a, b, and c

When you’re ready, run

python3 backprop.py grad_check_1

This will compare the numerical gradient to the gradient computed via backpropagation
on the inputs a = [3, 2], b = [−2, 7], c = [1,−4] (these were chosen arbitrarily). If you
have implemented the forward pass correctly, the program should print that f(a, b, c) ≈
2.059. The gradients computed numerically and with backprop should be very similar;
in particular, the maximum difference between any of the partial derivatives computed
should be less than 10−7. If any of the differences are bigger, you probably have a bug
somewhere in your implementation.

(i) (7 points) We are now ready to implement logistic regression! In this problem, we will
assume the inputs x are in R2, and our parameters are a weight vector w ∈ R2 and bias
b ∈ R. The predictions of the model are given by

P (y = 1 | x) = σ(w⊤x+ b),

and the loss function given a dataset of n examples {(x(1), y(1)), . . . , (x(n), y(n))} is

L(w, b) =

n∑
i=1

− log σ(y(i) · (w⊤x(i) + b)).

Now, implement the following:

• The function make logistic regression: This function takes in a dataset, formatted
as a list of pairs (x, y) where x is a numpy array of length 2, and y is either 1 or
-1. It then returns a function, which we are calling compute loss, that takes in a
choice of w (as a numpy array) and b (as a numpy float) and creates a computation
graph that computes the loss on the dataset.1

1More precisely, we create a closure. For a primer on closures in Python, see https://www.geeksforgeeks.org/
python-closures/.

This content is protected and may not be shared, uploaded, or distributed. Page 3 of 8

https://www.geeksforgeeks.org/python-closures/
https://www.geeksforgeeks.org/python-closures/


• The function gradient descent: This function takes as input a loss function (such as
the one returned by make logistic regression), a list of initial values for parameters
(i.e., the inputs to the loss function), a learning rate, and number of iterations. It runs
gradient descent on the loss function, storing the updated values of the parameters
inside the provided list of parameter values.

When you’re done, run your logistic regression implementation on a simple dataset:

python3 backprop.py logreg -d simple

This trains on a 4-example linearly separable dataset. You should get a final loss of roughly
0.014.

(j) (2 points) While logistic regression perfectly classifies this dataset, it cannot perfectly
classify a dataset that is not linearly separable. Try the following:

python3 backprop.py logreg -d xor

This runs logistic regression on XOR DATASET defined at the top of backprop.py. What is
the final loss that logistic regression achieves? Why is it much higher than the loss on the
simple dataset?

(k) (4 points) To fit this XOR dataset, we will need a neural network. To implement a neural
network, we will need one more operation: multiplying a matrix by a vector. Thus, we
will implement MVMulNode, which takes as input a matrix M of dimension p×d and vector
v of length d, and computes the matrix-vector product u = Mv as output.

Write the formulas for the backpropagation update rules to ∇My and ∇vy in terms of M ,
v, u, and g, where g is the already-computed value of ∇uy. Note that since the output u
is a vector of length p, g is a vector of length p as well. ∇My is a matrix the same shape
as M , where each entry is the partial derivative of y with respect to the corresponding
entry of M :

∇My =


∂y

∂M11

∂y
∂M12

· · · ∂y
∂M1d

∂y
∂M21

∂y
∂M22

· · · ∂y
∂M2d

· · ·
∂y

∂Mp1

∂y
∂Mp2

· · · ∂y
∂Mpd


Hint: This is the trickiest gradient problem, but you can derive it from first principles.
Write out the formula for Mv and analyze the partial derivative with respect to Mij and
vj . Also, you can look at the notes of Section 3 Calculus and Gradients on course website
for reference. (Note: your expressions might only use a subset of M , v, and u, but you’re
free to use any of them in your expression.)

(l) (3 points) Using your formulas from the previous part, implement the MVMulNode class.

(m) (6 points) Let’s do another gradient check for MVMulNode. Our inputs will be a matrix M

and vector v, and we will compute the function

f(M, v) = v⊤ReLU(Mv),

where ReLU(z) = max(z, 0) is the element-wise ReLU function.

Fill in the missing code inside gradient check 2. When you’re ready, run

python3 backprop.py grad_check_2

This content is protected and may not be shared, uploaded, or distributed. Page 4 of 8



This will compare the numerical gradient to the gradient computed via backpropagation
on the inputs

M =

(
2 −1
0 3

)
v =

(
1
−3

)
If you have implemented the forward pass correctly, the program should print that f(M,v) =
5. The gradients computed numerically and with backprop should be very similar; in par-
ticular, the maximum difference between any of the partial derivatives computed should
be less than 10−7. If the differences are bigger, you probably have a bug somewhere in
your implementation.

(n) (6 points) Finally, we are ready to implement a neural network! We will use a neural
network with a single hidden layer that has 3 hidden units, and the ReLU activation
function. As before with logistic regression, we will assume that the inputs are of dimension
2. This means that the parameters are a matrix W ∈ R3×2, vector b ∈ R3, vector v ∈ R3,
and scalar c. We will use a logistic regression-style loss function, so the output of the
neural network can be interpreted as a probability:

p(y = 1 | x) = σ(v⊤ReLU(Wx(i) + b) + c).

Thus, the loss function given a dataset of n examples {(x(1), y(1)), . . . , (x(n), y(n))} is

L(w, b) =
n∑

i=1

− log σ(y(i) · (v⊤ReLU(Wx+ b) + c)).

Implement make neural network, which is analogous to make logistic regression but
will instead compute the neural network loss function described above. It will take as
input values for W , b, v, and c.

When you’re done, run your neural network implementation on the xor dataset:

python3 backprop.py neural -d xor

This will use the same gradient descent function you completed earlier, but with the loss
function produced by make neural network. You should get a final loss of roughly 0.019,
much lower than the loss of logistic regression on the same problem. Congratulations! You
have written code that trains a neural network from scratch.

Question 2: k-Means and Image Compression (24 points)
In this problem, you will implement k-Means clustering and use it to compress an image.

(a) (10 points) Implement the kmeans function inside kmeans.py. This function should return
a tuple containing the cluster assignments, the means of each cluster, and the k-means
loss (also known as the reconstruction error), defined as

n∑
i=1

∥x(i) − µzi∥2

where x(i) is the i-th example, zi is the ID of the cluster assigned to the i-th example, and
µc is the centroid of the c-th cluster.

This content is protected and may not be shared, uploaded, or distributed. Page 5 of 8



The starter code already initializes the cluster centroids to randomly chosen examples
in the dataset. You should add code that keeps updating the cluster assignments and
centroids until the assignments stop changing. Your code should not contain any for
loops over the number of examples. Hint: it may be helpful to use the fact that

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2x⊤y.

The function np.argmin() will also be useful. (It is OK to have a for loop over the number
of clusters)

When you’re ready, run your code with k = 2:

python3 kmeans.py basic -k 2

This will run your code on simple 2-dimensional dataset. You should get a reconstruction
error of roughly 6698.

(b) (4 points) Now try k = 3, . . . , 10. Make a plot of the reconstruction error for each value
of k. Based on the elbow criterion, which value(s) of k seem to be the best? Explain your
reasoning.

(c) (3 points) The code automatically generates plots of your clusters and the cluster centroids
in files called clusters k*.png. Paste the images for k = 2, k = 10, and the best k chosen
in the previous part. Describe all three plots, and describe what makes the k you chose
better than both k = 2 and k = 10.

(d) (3 points) Now we will use k-means to “compress” an image. The original image is at
original.png. Our compression strategy will be to view the color of each pixel as a
3-dimensional vector of (red, green, blue) intensity values. We can then cluster this set of
3-dimensional vectors to find k colors that are representative of the overall color scheme
of the image (i.e., the cluster centroids). Then, we will replace each pixel’s color with the
color of the cluster centroid it was assigned to. This allows us to simply store the cluster
assignment for each pixel, rather than the color of each pixel.

Run the following command:

python3 kmeans.py image -k 2

Try it with k = 2, 4, 8, 16 and show the resulting images (written to compressed k*.png).
Describe the resulting images and how the choice of k affects the appearance of the com-
pressed image. (Note: This should only take a few seconds to run. If it is taking much
longer, you may need to speed up your k-means implementation.)

(e) (4 points) Assume each pixel of an image is normally stored as three 8-bit integers, for
the red, green, and blue channels. When you compress the image by running k-Means, by
what factor does the number of bits needed to store the image go down? You may assume
that k is a power of two, and ignore the fact that to store the image, you would also have
to store the mapping from each cluster ID to the corresponding color. Finally, use the
formula you derived to compute the factor of memory saved for k = 2, 4, 8, 16.

Question 3: Clustering Binary Vectors with EM (25 points)
In class, we saw how to use the Expectation-Maximization (EM) algorithm for Gaussian Mix-
ture Models (GMMs). In this problem, we will apply EM to a different clustering problem, in
which our data consists not of real-valued vectors but of binary vectors.

This content is protected and may not be shared, uploaded, or distributed. Page 6 of 8



Suppose we have a dataset D = {x(1), . . . , x(n)} where each x(i) ∈ {0, 1}d. That is, each x(i) is
a d-dimensional vector where every entry is either 0 or 1. For instance, maybe each example
represents a genome, d is the number of SNPs (genomic variants) we have measured, and the
j-th component of x(i) is 1 if the i-th person has a substitution in the j-th position relative to
the reference genome, and 0 if they have the same DNA base as the reference genome.

As we did with GMMs, we will posit a latent variable probabilistic model for this data. LetXi be
the random variable representing the i-th example. We assume that the Xi’s are independently
and identically distributed (iid). Each Xi is generated by first sampling a cluster ID Zi ∈
{1, . . . , k} from some distribution π. π is represented by a k-dimensional vector of probabilities;
πc is the probability that Zi = c.

Now, we make a Naive Bayes-like assumption. Conditioned on Zi, the probability of Xi is given
as

P (Xi = x(i) | Zi = c) =

d∏
j=1

P (Xij = x
(i)
j | Zi = c).

This says that each component of Xi is sampled independently at random from a distribution
governed by the cluster ID c. Thus, the second set of parameters is a matrix W ∈ Rk×d, where
each Wcj is the probability that the j-th component of Xi is 1 conditioned on Zi = c:

P (Xij = 1 | Zi = c) = Wcj .

Now, we will derive an EM algorithm to both infer the latent cluster assignments and learn the
parameters of this probabilistic model.

(a) (7 points) E step. In the E step, we use our current guesses of the parameters π and τ
to infer the posterior distribution over the Zi’s. In particular, for each i, and each cluster
c, we want to compute

ric = P (Zi = c | Xi = x(i);π,W ).

Derive the formula in terms of π and W to compute this quantity. Show all of your steps.
(Hint: It may be helpful to use the notational trick that for a random variable Y where
P (Y = 1) = p and P (Y = 0) = 1 − p, the expression py(1 − p)1−y always evaluates to
P (Y = y) both when y = 0 and y = 1.)

(b) (5 points) M step: Expected Complete Log-likelihood. In the M step, we take our
current guesses for the distribution of the Zi’s and use those to update our guesses of
the parameters π and W . Recall that we do this by maximizing the expected complete
log-likelihood (ECLL), a quantity that is similar to the log-likelihood but that takes an
expectation with respect to the distribution of Zi’s computed in the E step. Write the
expected complete log-likelihood of the parameters π and W in terms of π, W , the data
{x(1), . . . , x(n)} and the ric values computed in the E step.

(c) (10 points) M step for W . Now, let’s derive the M step update for W . We’ll do this by
deriving the general rule to update Wcj for any choice of c and j. You should take the
partial derivative of the ECLL with respect to Wcj and set this equal to 0. Then, solve for
Wcj to derive the update rule for Wcj . Show your work. You should get an expression for
Wcj in terms of the ric’s computed in the E-step and the data x(i). Finally, explain in a
couple sentences why the formula you derived makes sense intuitively (Hint: think about
what the ric values represent).

This content is protected and may not be shared, uploaded, or distributed. Page 7 of 8



(d) (3 points) M step for π. Finally, write down the M step update for π. Again, explain
in a couple sentences why this formula makes sense intuitively. (Note: This will be very
similar to the GMM update rule from lecture. You do not need to provide a derivation,
just give the update rule.)

This content is protected and may not be shared, uploaded, or distributed. Page 8 of 8


