Sentiment Analysis with Multi-Models: A Focus on Hate Speech Detection

Keyu He Haofeng Xu Qiang Zeng

Abstract

In the digital era, the increasing prevalence of
online hate speech poses a severe societal chal-
lenge. This study evaluates advanced machine
learning models, including Naive Bayes and Bidi-
rectional Encoder Representations from Trans-
formers (BERT), for effective hate speech detec-
tion in online content. We adopt a novel com-
parative approach to assess these methodologies,
focusing on their capability to handle the com-
plex nuances of hate speech. Our rigorous evalu-
ation, using metrics such as accuracy, precision,
recall, and F1-score, indicates a marked variance
in performance across models. Notably, while
the Naive Bayes show limited effectiveness, the
BERT model demonstrates superior performance,
substantially outperforming the baseline. These
findings underscore the potential of transformer-
based models in addressing the challenges of hate
speech detection in the digital landscape.

1. Introduction

There is an increasing prevalence of online hate speech,
which can lead to real-world harm, including mental health
issues and the perpetuation of discrimination and violence.
This endeavor is driven by the imperative need to mitigate
the proliferation of hate speech on social media platforms.

This project is driven by the goal of enhancing the safety and
inclusivity of online environments through the automated
detection and moderation of hate speech. We focus on the
identification of hate speech within a dynamically generated
dataset (Sharengaraju, 2021), which presents unique chal-
lenges due to its evolving nature and the subtle complexities
inherent in human language.

The investigation led us through a detailed analysis of the
three models, each evaluated based on its ability to accu-
rately classify text into ‘hate’ or ‘not hate’ categories. Our
findings painted a nuanced picture of model performance.
The Naive Bayes model, traditionally favored for its simplic-
ity and efficiency in text classification, delivered moderate
results. It was able to go beyond mere keyword matching
but struggled with the subtler aspects of language that are

often pivotal in correctly identifying hate speech.

The BERT model stood out for its exceptional performance.
Its sophisticated mechanism for processing text in a bidirec-
tional context allowed for a far deeper and more accurate
understanding of the intricacies involved in differentiating
hate speech from benign expressions. BERT’s advanced
approach to contextual analysis proved to be a significant
asset, leading to substantially higher accuracy and setting a
new benchmark in our project.

It becomes evident that while traditional models like Naive
Bayes have their merits, the advanced capabilities of models
like BERT are indispensable for effectively navigating the
complexities of hate speech detection. These outcomes
offer a promising direction for future research and practical
applications in the realm of online content moderation.

2. Related Work and Proposed Methodologies

The field of hate speech detection has been explored through
various innovative approaches, offering valuable insights
into model performance and robustness. This project’s
methodologies are informed by the findings in existing liter-
ature.

2.1. Avoiding Overfitting and Bias

Dixon et al. (Dixon et al., 2018) not only highlighted the
challenge of overfitting in text classification models but also
demonstrated how imbalances in training data can lead to
unintended bias in the resulting models. This can result in
potentially unfair applications, a significant concern in hate
speech detection. Our approach addresses these concerns in
two ways:

* Dataset Balance: In response to the issues raised by
Dixon et al., we utilized a balanced dataset for training
our models. This helps in mitigating the bias that can
arise from skewed data distributions.

¢ Cross-Validation: We also employed k-fold cross-
validation, particularly in training our Naive Bayes
model, to ensure that the model learns generalized
patterns and remains accurate when confronted with
new data.

2.2. Contextualizing Hate Speech Classifiers

Kennedy et al. (Kennedy et al., 2020) emphasized the im-
portance of context in classifying hate speech accurately.
Their work involved developing context-aware classifica-
tion models, which is aligned with our decision to utilize
BERT for its superior contextual understanding capabilities.
BERT’s bidirectional processing of text enables a deeper
understanding of language nuances, addressing the complex
and subtle aspects of hate speech detection more effectively.

Extending beyond Kennedy et al.’s focus on context, we
integrate BERT for its innate deep contextual analysis capa-
bilities, offering an advanced approach to understanding the
complexities of hate speech.

Informed by Dixon et al. (Dixon et al., 2018) and Kennedy
et al. (Kennedy et al., 2020), our project strategically uses
balanced datasets, cross-validation, and context-aware mod-
els like BERT to develop a robust hate speech detection
system. This system is designed to be fair, unbiased, and ef-
fective across diverse online platforms, tackling the unique
challenges of hate speech detection in the digital era.

3. Dataset and Evaluation
3.1. Dataset

A critical aspect of any machine learning project, partic-
ularly in the realm of natural language processing, is the
selection of an appropriate and representative dataset. In the
field of hate speech detection, however, many existing hate
classification datasets have imbalance issues, such as the
Kaggle’s “Hate Speech and Offensive Language Dataset”,
where most samples are skewed heavily towards offensive
language. Such imbalances can lead to significant biases
in model training, potentially resulting in models that are
overfitted to the dominant class and unable to generalize
effectively to real-world data. To address this, we chose
Kaggle’s “Dynamically Generated Hate Speech Dataset,”
comprising 40,463 samples with a more balanced distribu-
tion: 54% hate speech and 46% non-hate. For our project,
we retained only the text and label columns.

The dataset itself comprises sentences that are algorithmi-
cally generated, encompassing a diverse array of hate speech
manifestations. These sentences are then meticulously la-
beled by human annotators, ensuring that the classification
of ‘hate’ or ‘not hate’ accurately captures the nuanced and
often subjective nature of hate speech. This human element
in the labeling process is critical, as it imbues the dataset
with a level of complexity and realism that purely algorith-
mic approaches might miss.

For the purposes of our project, we focused exclusively on
the text and label columns of the dataset. The text column
contains the sentences identified as potential instances of

hate speech, while the label column provides the correspond-
ing classification. This streamlined approach allows us to
concentrate our analysis on the linguistic content of the text
and its classification, which are the most pertinent aspects
for our study on hate speech detection.

3.2. Dataset Split

For systematic model training and evaluation, we shuffled
and partitioned our dataset into three subsets: training, de-
velopment (or validation), and testing. Specifically:

* Training Set (70%): Used primarily for model training,
capturing patterns and nuances from the majority of
the data.

* Development Set (10%): A crucial subset for model
evaluation and tuning. After initial training, the
model’s performance on the development set guides
potential refinements.

 Testing Set (20%): Provides an unbiased performance
measure on entirely unseen data, ensuring our model
evaluations are genuine.

3.3. Evaluation
3.3.1. METRICS SELECTION

Model performance was gauged through multiple conven-
tional metrics for a comprehensive understanding:

* Accuracy: This metric represents the proportion of
correctly predicted instances (both hate and non-hate)
out of the total number of predictions made. A higher
accuracy indicates that the model is generally reliable
in its predictions across both classes. This is evaluated
as:

True Positives + True Negatives
All Predictions

Accuracy =

* Precision: Precision focuses on the proportion of true
positive predictions (correctly identified hate speech)
in relation to all positive predictions (all instances pre-
dicted as hate speech, correctly or not). High precision
implies that when the model predicts a text as hate
speech, it is likely to be correct, thereby reducing the
occurrence of false positives. It is defined as:

True Positives

Precision = — —
True Positives + False Positives

e Recall: Also known as sensitivity, recall measures
the ability of the model to correctly identify actual in-
stances of hate speech. It is the ratio of true positive
predictions to the total number of actual hate speech

instances. High recall indicates that the model is ef-
fective in capturing most of the true instances of hate
speech, missing very few. It is given by:

True Positives

Recall = — -
True Positives + False Negatives

* F1-Score: The F1-Score is the harmonic mean of pre-
cision and recall. It is a single metric that balances
both precision and recall, providing a more holistic
view of the model’s performance. A high F1-Score
suggests that the model has a balanced trade-off be-
tween precision and recall, excelling in both aspects. It
is calculated as:

Fl-Score — 2 x Precision x Recall

Precision + Recall

3.3.2. EVALUATION STEPS

1. Development Phase: Models are initially trained on
an 70% training subset and evaluated using a 10%
development set. This flags any overfitting and guides
hyperparameter tuning.

2. Final Testing: After the models are tuned, they are sub-
jected to a final evaluation on a distinct 20% test subset
of the data. This phase is critical as it simulates real-
world conditions, providing an unbiased assessment
of the models’ performance in a setting that mirrors
actual usage scenarios.

3. Analysis of Results: The last step involves a thor-
ough analysis of the models’ performance metrics —
accuracy, precision, recall, and F1-score. This com-
prehensive evaluation is designed to verify not only
the models’ ability to detect explicit instances of hate
speech but also their effectiveness in identifying more
nuanced and subtle expressions. A balance of high
accuracy with strong precision and recall scores is in-
dicative of a model proficient in accurately identifying
hate speech while minimizing false positives.

4. Methods

In our endeavor to accurately classify sentiments, multiple
approaches, ranging from basic to advanced techniques, will
be implemented and assessed. This diverse set of methods
ensures a comprehensive understanding of model capabili-
ties and provides a clear comparison of their performances.

4.1. Majority-Rule Baseline

The Majority Classifier serves as our baseline model. This
simplistic approach always predicts the most frequent label
observed in the training dataset, irrespective of the input

it encounters during the testing phase. The rationale be-
hind employing this method is to establish a foundational
performance metric, against which the efficacy of more
sophisticated models can be juxtaposed.

4.1.1. PROCEDURE

1. Load the dataset and segregate it into features (text)
and labels (label).

2. Split the dataset into training and testing subsets.
3. Identify the majority class label within the training set.

4. Generate a prediction array for the testing set, popu-
lated exclusively with the majority class label.

5. Evaluate the model’s performance using accuracy, pre-
cision, recall, and F1-score.

4.2. Naive Bayes

The Naive Bayes classifier, based on Bayes’ theorem, is
a probabilistic model that calculates the probability of a
class label based on the features of the instance. It operates
under the assumption of conditional independence between
features given the class label. The classifier’s effectiveness
in text classification tasks stems from its ability to handle
high-dimensional data and make predictions based on the
probabilities derived from feature-class relationships.

The formula for the Naive Bayes classifier is given by:

P(Ci) ITi=, P(%:]Cy)
P(z)

P(Cylz) =

Where:

- P(Cy|x) is the posterior probability of class C}, given
predictor z. (Cy € {0, 1}, where 0 represents “not hate”
while 1 represents “hate”)

- P(C}) is the prior probability of class C.

- P(z;|Cy) is the likelihood, which is the probability of
predictor z; given class Cl.

- P(x) is the prior probability of predictor . (We
do not directly compute this, instead, we find
argmax, P(Cy) [Ti—, P(x:|C))

The z; terms we used here refer to the features derived from
the TF-IDF vectorization of the text data.

4.2.1. FEATURE EXTRACTION USING TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is
a statistical measure used to evaluate the importance of a
word to a document in a collection or corpus. It is often
used as a weighting factor in information retrieval and text
mining. The TF-IDF value increases proportionally with

the number of times a word appears in the document but
is offset by the frequency of the word in the corpus, which
helps control for the fact that some words are generally more
common than others.

The TF-IDF for a word in a document is calculated as:
TF-IDF(¢,d) = TF(t,d) x IDF(t)

Where:
- TF(¢, d) is the term frequency of term ¢ in document d.

- IDF(¢) is the inverse document frequency of term ¢, cal-
culated as log(dﬂft), with N being the total number of doc-
uments and df; the number of documents containing term
t.

In our implementation, we used the TF-IDF vectorizer to
convert the raw text into a numerical format. We set a maxi-
mum feature limit of 5000 and removed common English
stop words. The resultant TF-IDF vectors replace the tra-
ditional count-based features in the Naive Bayes classifier,
providing a more nuanced and weighted representation of
text for classification.

4.2.2. HYPERPARAMETER TUNING AND
CROSS-VALIDATION

We focused on tuning the Laplace smoothing parameter o
of the Naive Bayes classifier, which is critical in handling
the problem of zero probability in unseen data. A range of
« values was tested: [0.001,0.01,0.1,0.5,1,2,5,10]. To
determine the optimal «, we employed a rigorous k-fold
cross-validation approach with £ = 5. This method involved
dividing the training dataset into & subsets, and training the
model k times, each time using a different subset as the
validation set and the remaining as the training set. The
cross-validation process helps ensure that our model is not
just tuned to a specific subset of the data, thereby enhanc-
ing its generalizability and robustness. The optimal o was
selected based on the configuration that yielded the highest
accuracy during this process.

4.2.3. MODEL EVALUATION

The optimized Naive Bayes model was then evaluated on the
test set. Performance metrics including accuracy, precision,
recall, and Fl-score were employed to comprehensively
assess the model’s capability in accurately classifying text
as either hate speech or non-hate speech.

4.3. BERT

The BERT (Bidirectional Encoder Representations from
Transformers) model, developed by Google, represents a
significant leap in natural language processing. Utilizing
a transformer architecture, BERT captures the contextual

relationships between words by considering their full con-
text, looking at the words that come before and after. This
method is a notable advancement over traditional models
like Naive Bayes, which rely primarily on keyword fre-
quency without contextual awareness. BERT’s ability to
interpret entire sentence structures leads to more accurate de-
tection of hate speech, effectively addressing the challenge
of subtlety and nuances in language. This capability makes
BERT exceptionally suited for tasks that require nuanced
language processing, such as accurately identifying hate
speech, a critical requirement that had been a key limitation
in earlier methods like Naive Bayes.

(Devlin et al., 2018).

[MASK] [MASK]
e () ()) ()))) e)))
Token
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+
-+ -+ -+ -+ -+ -+ -+ L d -+ -+ -+

Figure 1. The BERT model

Sentence
Embedding

Transformer
Positional
Embedding

The BERT model is pre-trained on a large corpus of text and
then fine-tuned for specific tasks like classification, question-
answering, or sentiment analysis.

4.3.1. FINE-TUNING BERT FOR CLASSIFICATION

Fine-tuning the pre-trained BERT model involves training
it on a smaller dataset specific to the task at hand. For our
classification task, we add a dense layer on top of the BERT
architecture, which takes the output representations from
BERT and processes them to produce class probabilities.

The architecture of our BERT-based classifier is as follows:

Output = DenseLayer(BERT(z))

Where:

- BERT(z) represents the BERT model processing the input
text x.

- The DenseLayer is a fully connected neural network layer
that outputs the probability of each class.

Our implementation utilizes the ‘bert-tiny’ version of the
model, which is a smaller, more computationally efficient
variant of the original BERT model designed for environ-
ments with constraints on model size and processing power.
The dataset is tokenized using BERT’s tokenizer, ensuring
compatibility between the model architecture and the input
data format.

4.3.2. TOKENIZATION AND INPUT REPRESENTATION

BERT requires a specific input format, which includes to-
kenized text data, segment IDs, and attention masks. The
tokenization process involves converting each word into a
token that corresponds to an entry in BERT’s vocabulary.
Special tokens, such as [C'LS] for the start of a sequence
and [SE P] for the end of a sequence or separation between
sentences, are also added.

The input representation for each text in our dataset is
formed as follows:

Input = Tokenize([CLS], z, [SEP])

Where:

- Tokenize is the function applying BERT’s tokenization
process.

- x is the raw text of the instance.

- [CLS] token stands for “Classifier” and is used at the
beginning of every input sequence in BERT. In our project,
when classifying a text as hate speech or not, the model
looks at the transformed representation of this [C'LS] token
to make a decision.

- [SEP] token, short for “Separator,” is used in BERT to
denote the end of a sentence or to separate two different
sentences.

The tokenized inputs are then padded or truncated to a fixed
length and passed through the BERT model for training and
classification tasks.

4.3.3. HYPERPARAMETER OPTIMIZATION

In deep learning, the fine-tuning of hyperparameters is cru-
cial for enhancing model performance. Hyperparameters
in BERT networks, such as the number of learning rates,
optimizer types, and batch sizes, significantly influence
the learning process and final model accuracy. However,
manually searching for the optimal combination of these pa-
rameters is time-consuming and computationally expensive.

Role of WandB We employed Weights & Biases
(WandB), an advanced tool for machine learning experiment
tracking, to streamline and optimize the hyperparameter tun-
ing process of our BERT model. WandB is particularly
beneficial for its capability to automate the exploration of
hyperparameter spaces efficiently.

Hyperparameter Combinations Explored with WandB
In our BERT model optimization, several key hyperparam-
eters were identified for the WandB sweep. Below is a
detailed enumeration of each hyperparameter and the range
of values that were explored:

1. Learning Rate: The learning rate is a critical parame-
ter in training neural networks, influencing the speed
and quality of learning. We experimented with a range
of learning rates from le-5 to 5e-5 to find the optimal
setting for our BERT model.

2. Optimizer Type: The choice of optimizer can impact
the convergence and performance of the model. We
evaluated several optimizers: Adam, Rmsprop, and
SGD.

3. Batch Size: Batch size influences the speed and sta-
bility of the learning process. We included several
batch sizes (16, 32, 64, 128, and 256) in our sweep to
determine the optimal size for our dataset.

5. Experiment
5.1. Baseline

As part of our experiment, the Majority Classifier was cho-
sen as the baseline. As previously stated, this model always
predicts the label that is most frequent in the training dataset.
The main purpose of this model was to provide a fundamen-
tal metric, making it easier to understand the advancements
made by our more sophisticated models. We got an accuracy
of 54.16% for baseline model.

The Confusion Matrix for the baseline is shown in Figure 2.

4000
3500
Hate
3000

2500

2000

Predict label

r 1500

Not Hate 0 0 | 1000

[500

T T
Hate Not Hate
Actual label

Figure 2. Confusion Matrix for Baseline

The evaluation metrics for the Baseline are shown in table 1.
Note that we reach 1 in recall as the baseline does not give
any negative labels, causing F'N = 0.

5.2. Naive Bayes

We ran the Naive Bayes model multiple times to find the
best Laplace smoothing parameter alpha:

Metric Value
Accuracy 0.542
Precision 0.542

Recall 1.000
F1 Score 0.703

Table 1. Evaluation Metrics for Baseline

Alpha Accuracy
0.001 0.6596
0.01 0.6606
0.1 0.6594
0.5 0.6594
1 0.6606
2 0.6616
5 0.6530
10 0.6426

Table 2. Accuracy of Naive Bayes for Varying Alpha

In table 2, we changed alpha for Naive Bayes model; higher
values indicate more smoothing. The table suggests that
alpha = 2 gives the best dev accuracy for Naive Bayes at
66.16%, which suggests that some amount of smoothing
benefits the model, but too much (alpha = 10) or too little
(alpha = 0.001) is detrimental.

By utilizing the best option for alpha (alpha=2), we trained
the model and got train accuracy of 72.54%, dev accuracy
66.16%, and test accuracy of 67.27%.

The Confusion Matrix for the Naive Bayes is shown in
Figure 3, and the evaluation metrics for the Naive Bayes are
shown in table 3.

3500

3000

Hate 1821

2500

F 2000

Predict label

Not Hate 838 1903 L 1500

1000

T T
Hate Not Hate
Actual label

Figure 3. Confusion Matrix for Naive Bayes

The higher recall and lower precision in our Naive Bayes
model can be attributed to its reliance on keyword detection.

Metric Value
Accuracy 0.673
Precision 0.662

Recall 0.810
F1 Score 0.728

Table 3. Evaluation Metrics for Naive Bayes

Naive Bayes tends to classify sentences as hate speech if
they contain certain keywords often found in hate speech,
regardless of context. This leads to many true positives
but also a substantial number of false positives, where non-
hate speech is incorrectly labeled as hate. Consequently,
while the model is effective at identifying most hate speech
instances (high recall), its precision is compromised by
mistakenly classifying many non-hate sentences as hate
speech.

The Naive Bayes model outperforms the Majority Classifier
baseline, having around 0.13 higher in accuracy. This shows
that the Naive Bayes model is capturing some underlying
patterns in the data, while the Majority Classifier only serves
as a rudimentary measure.

In summary, Naive Bayes has some ability to generalize
from the training data. However, 67% accuracy is not very
satisfying, we need a more powerful model to reach higher
accuracy.

5.3. BERT

In our study, we utilized a Weights and Biases (WandB)
system for the effective optimization of hyperparameters in
the BERT model.

5.3.1. SWEEP RESULTS VISUALIZATION

A crucial aspect of our methodology was the visualization
of sweep results. We present a result from the WandB dash-
board (Figure 4), which showcases the outcomes of various
runs in the sweep. This visual representation offers an in-
tuitive understanding of how different hyperparameter con-
figurations impacted the model’s performance. The metrics
tracked in each run include accuracy, loss, and other rele-
vant performance indicators, providing a clear comparison
between different experimental setups.

The optimal set of hyperparameters is: learning rate =
3.334e-5, optimizer = Adam, and batch size = 16.

Remarkably, with the optimal hyperparameter configura-
tion determined through our systematic analysis, the BERT
model exhibited exceptional performance, significantly sur-
passing the other models we evaluated in this study. These
outcomes reinforce the capability of BERT in handling com-

batch_size learning_rate optimizer_name val_accuracy

260

0.000050

240 —

220) G0800H5_ N\
200
180
160
140
120
100
80)
60
40
20
0

000040

0.000010

Figure 4. Visualization of Hyperparameter Optimization Results
in WandB Dashboard

plex natural language processing tasks. In the ensuing sec-
tions, we will provide a more in-depth exploration of these
results, aiming to uncover the underlying factors that con-
tribute to the superior performance of the BERT model.

We then utilized the best combination of hyperparameters
identified for both training and testing the model. Notably,
we set the number of training epochs to 20 and we incorpo-
rate an early stopping mechanism to enhance the training
efficiency and prevent overfitting. During the training pro-
cess, the model achieved a training accuracy of 0.8718, a
validation accuracy of 0.7871, and a test accuracy of 0.7950.

Figure 5 shows the confusion matrix for BERT, after we
choose the optimal hyperparameter and run 8 epochs, and
table 4 illustrates the specific metrics achieved with this
optimal configuration.

3500
3000

Hate

2500

2000

Predict label

Not Hate 1 [1500

r 1000

Hate Not Hate
Actual label

Figure 5. Confusion Matrix for BERT (with optimal hyperparame-
ter chosen)

It is important to highlight that the training was halted at the
8th epoch, a decision governed by the early stopping criteria
set in our training configuration. The patience parameter
was configured to halt training if there was no improvement

Metric Value
Accuracy 0.795
Precision 0.789

Recall 0.848
F1-Score 0.818

Table 4. Evaluation Metrics for BERT

in the loss metric for 3 consecutive epochs. This strategic
approach of early stopping played a pivotal role in ensuring
that the model did not overfit to the training data while still
achieving high levels of accuracy. Such a methodology not
only optimized the training duration but also ensured the
robustness and generalizability of the model, as evidenced
by the consistency of performance metrics across training,
validation, and test datasets.

These results underscore the effectiveness of our chosen
hyperparameter strategy and the utility of BERT in effi-
ciently processing and classifying complex textual data. The
model’s ability to cease training at an optimal point further
demonstrates the sophistication of the learning process and
the appropriateness of the chosen hyperparameters.

5.4. Comparative Analysis and Implications

The experimental results reveal notable differences in the
performance of the Majority Classifier, Naive Bayes, and
BERT models in the context of hate speech detection. The
Majority Classifier, with its simplistic approach, provided a
baseline performance, achieving an accuracy of 54.16%. In
contrast, the Naive Bayes model showed a marked improve-
ment with a test accuracy of 67.27%. Unsurprisingly, it was
the BERT model that stood out, achieving a test accuracy of
79.50%, significantly higher than the other models.

These performance differences can be attributed to the in-
herent characteristics and capabilities of each model:

* Majority Classifier: Its lower performance is expected
as it does not consider any features of the input text,
merely predicting the most frequent label in the train-
ing set. This approach lacks any linguistic analysis,
making it a rudimentary measure of classification ca-
pability.

* Naive Bayes: The improvement in performance over
the baseline is due to its ability to analyze text fea-
tures (using TF-IDF vectorization) and predict based
on statistical relationships. However, its limitations in
handling context and subtleties in language, as well as
its sensitivity to specific keywords, explain why it did
not perform as well as BERT.

* BERT: The superior performance of BERT is at-

tributed to its deep learning architecture and ability
to understand the context of words in a sentence. This
model captures nuanced meanings and complex lin-
guistic structures, making it particularly effective for
tasks like hate speech detection.

5.4.1. IMPLICATIONS

The results of this study have several implications:

* Model Selection: The choice of model plays a cru-
cial role in the effectiveness of hate speech detection.
While simpler models may provide quicker and more
computationally efficient solutions, their effectiveness
is limited compared to more advanced models like
BERT.

Contextual Analysis: Models capable of understand-
ing context and nuances in language, like BERT, are
essential for accurately identifying hate speech, which
often involves complex and subtle expressions.

Model Optimization: The tuning of hyperparameters
and the incorporation of mechanisms like early stop-
ping, as demonstrated in the BERT model, are vital for
optimizing performance and preventing overfitting.

In conclusion, our experiments underscore the importance
of advanced NLP techniques and models for effective hate
speech detection. The stark differences in performance
among the models highlight the need for sophisticated tools
capable of deep linguistic and contextual analysis in address-
ing the challenges of moderating online content.

6. Discussion
6.1. Baseline

The baseline method Majority Classifier, by design, is a
rudimentary model that offers limited insights into the nu-
ances of hate speech detection. Its simplistic approach of
always predicting the predominant label from the training
set inherently restricts its ability to discern between different
classes based on the content of the text.

6.1.1. ERROR ANALYSIS

Upon examining a random sample from the development
set, it became evident that the Majority Classifier’s errors
were consistent—it invariably misclassified all instances
from the ‘not hate’ class. This behavior is expected given its
design. The model’s inability to analyze text content means
it cannot differentiate between hate speech and non-hate
speech, leading to a high false positive rate for the ‘hate’
class.

6.2. Naive Bayes
6.2.1. ERROR ANALYSIS

Our analysis of misclassified samples from the Naive Bayes
model provides insights into its limitations in accurately
detecting hate speech. Key issues identified are:

1. Sensitivity to Specific Keywords: The model tends to
overemphasize certain keywords associated with hate
speech, leading to false positives.

Example: “I am seeing less openly gay people in this
area compared with a few years ago.”

Actual Label: not hate, Predicted Label: hate.
Despite being a neutral observation, the mention of
‘gay people’ likely influenced its misclassification, in-
dicating an over-reliance on specific keywords rather
than the overall sentiment.

Example: “The government is not making things right
Jfor small business owners and keeps giving benefits to
the rich business so what do they do, blame immi-
grants!”

Actual Label: not hate, Predicted Label: hate.

This sentence, critical of government policies, is
wrongly classified as hate speech due to the presence
of the word ‘immigrants’.

2. Difficulty with Subtlety and Nuance: Naive Bayes
struggles with sentences that contain subtle or nuanced
expressions.

Example: “You should move from your country dude.
USA is sieged by j3ws, just like Europe is...”

Actual Label: hate, Predicted Label: not hate.

Here, the model fails to identify the underlying hate
speech, possibly due to the nuanced way it is expressed,
underscoring a limitation in detecting subtle forms of
hate speech.

Example: “black dogs matter more than black lives.”
Actual Label: hate, Predicted Label: not hate.

The statement is incorrectly classified as non-hate,
likely due to the lack of direct hateful expressions de-
spite the underlying offensive comparison.

6.2.2. DISCUSSION ON PERFORMANCE

The Naive Bayes classifier, while efficient in many text clas-
sification tasks, exhibits notable limitations in the context
of hate speech detection. Its challenges in oversensitivity
to specific keywords, and difficulty in processing subtleties
and nuanced expressions lead to both false positives and
negatives. The model’s reliance on word frequencies and
inability to understand the broader context and tone of a
statement significantly impact its accuracy.

6.2.3. RECOMMENDATIONS FOR IMPROVEMENT

To enhance the Naive Bayes model’s performance in hate
speech detection, we recommend:

1. Incorporation of Contextual Features: Introducing
features that capture the broader context of a statement
could help mitigate the model’s limitations in under-
standing complex language structures.

2. Refinement of Feature Selection: Adjusting the
model to reduce its sensitivity to specific keywords
and to better interpret the overall sentiment and tone
of a statement.

3. Hybrid Modeling Approaches: Combining Naive
Bayes with other models that excel in processing con-
textual and nuanced language could improve overall
detection accuracy.

In conclusion, while the Naive Bayes model is valuable for
its efficiency and simplicity, its limitations in accurately
detecting hate speech underscore the need for further devel-
opment and integration with more context-aware approaches
in sensitive applications like online content moderation.

6.3. BERT
6.3.1. ERROR ANALYSIS

BERT performs much better than the Naive Bayes model,
and correctly labeled most of the samples which Naive
Bayes model misclassified. However, it still has nonnegligi-
ble error.

Our in-depth manual error analysis of the BERT model,
focusing on a selection of misclassified samples, provides
valuable insights into the model’s limitations and challenges
in accurately detecting hate speech.

1. Ambiguity and Subtlety in Language: The model
sometimes misclassified statements with nuanced or
ambiguous expressions of hate speech.

Example: “If’s not as if they were planning to mix us
out of existence by using mass immigration of young
men.”

Actual Label: not hate, Predicted Label: hate.

This sentence, though containing potentially charged
language, does not directly express hate speech. Its
classification as ’hate’ reveals BERT’s difficulty in nav-

igating complex sentences where intent is not explicit.

2. Challenges with Context-Dependent Interpretation:
BERT struggled with sentences requiring an under-
standing of broader social contexts or personal experi-
ences.

Example: “I am invited to the wedding of gay people I
don’t know what to do.”

Actual Label: not hate, Predicted Label: hate.

This statement reflects personal uncertainty rather than
hate speech. The model’s misclassification suggests a
limitation in differentiating between hate speech and
expressions of personal confusion or dilemma.

3. Misinterpretation of Neutral Statements with
Charged Keywords: The model sometimes misclas-
sified neutral statements due to the presence of words
typically associated with hate speech.

Example: “black widows are disgusting, they kill their
victims horribly.”

Actual Label: not hate, Predicted Label: hate.

Here, the reference to ‘black widows’ (spiders) is fac-
tual, yet the model misinterprets it as hate speech, pos-
sibly due to the negative descriptors. This indicates a
challenge in distinguishing between literal descriptions
and metaphorical or derogatory usage of terms.

4. Occational Misclassification of Explicit Hate Speech
BERT occasionally failed to identify clear instances of
hate speech.

Example: “the jews should be destroyed wif.”

Actual Label: hate, Predicted Label: not hate.

This blatant expression of hate speech being classified
as ‘not hate’ highlights a significant gap in the model’s
training or a potential anomaly in how it processes
explicit hate speech.

6.3.2. DISCUSSION ON PERFORMANCE

Despite BERT’s advanced capabilities in contextual under-
standing, our analysis reveals its limitations in handling sub-
tleties, ambiguities, and contextually complex statements
in hate speech detection. The model’s occasional failure to
recognize explicit hate speech and its misinterpretation of
neutral statements underscore the need for further refine-
ment in model training and contextual awareness.

6.3.3. RECOMMENDATIONS FOR IMPROVEMENT

Based on our findings, we recommend the following en-
hancements to improve BERT’s performance:

1. Contextual Data Enrichment: Incorporating more
diverse and contextually rich examples in the training
set could help the model better understand the com-
plexities and nuances of language used in hate speech.

2. Fine-Tuning for Subtlety and Ambiguity: Adjusting
the model to better capture and interpret subtle and am-
biguous expressions of hate speech, including indirect
and sarcastic remarks.

3. Hybrid Approaches: Employing hybrid models that
combine BERT’s strengths with other models adept at
processing sarcasm, irony, or metaphor could enhance
overall detection accuracy.

In conclusion, while BERT exhibits strong potential in hate
speech detection, its current limitations in interpreting com-
plex language nuances highlight the necessity for ongoing
model development and human oversight in sensitive appli-
cations like content moderation.

6.4. Overall Performance and Expectations
6.4.1. MODEL EXPECTATIONS VS. REALITY

The performance of the models in our experiments pre-
sented both expected and surprising elements. The Majority
Classifier, as anticipated, served merely as a rudimentary
baseline, lacking any real analytical capability. The Naive
Bayes model, while expected to perform moderately well,
demonstrated a significant improvement over the baseline,
particularly in its ability to capture keyword-based patterns.
However, its limitations in contextual understanding were
more pronounced than initially hypothesized, especially in
cases involving subtlety and nuance.

The most notable revelation came from the BERT model. Its
ability to understand context and nuance in text was remark-
able as anticipated, although it did encounter challenges
with ambiguities and complex sentence structures.

6.4.2. SURPRISING MODEL OUTCOMES

Certain outcomes from the model evaluations were particu-
larly surprising:

* Naive Bayes: The extent to which this model was
influenced by specific keywords, often leading to mis-
classifications even in seemingly neutral contexts, was
more pronounced than expected.

* BERT: While its overall high performance was antic-
ipated, BERT’s occasional failures to recognize clear
instances of hate speech or its misclassification of neu-
tral statements with charged keywords highlighted the
complexity of hate speech detection. Such instances
underscored the model’s need for further refinement
to better grasp the subtleties and complexities of lan-
guage.

7. Conclusion

In this study on hate speech detection, we evaluated vari-
ous models, including Naive Bayes and the more advanced
BERT. Our findings highlight the distinct capabilities and
limitations of each model in addressing the complexities of

automated hate speech detection.

Naive Bayes demonstrated moderate effectiveness, particu-
larly in identifying explicit forms of hate speech. However,
it struggled with contextually nuanced language, often mis-
classifying sentences based on specific keywords.

The BERT model, with its advanced architecture, showed
superior performance in understanding the intricacies of lan-
guage in hate speech. Despite its strengths, BERT also faced
challenges in interpreting ambiguous or context-dependent
statements.

This study underscores the importance of advanced models
like BERT for tasks requiring deep contextual understanding.
However, the limitations observed in both models suggest a
need for continuous improvement and human oversight.

We propose future work to focus on enhancing data en-
richment, fine-tuning model sensitivity to subtleties, and
exploring hybrid modeling approaches. These efforts aim
to further refine hate speech detection systems, contributing
to more effective and nuanced online content moderation.

8. Code & Data Submission

The code and dataset for this project are at
https://github.com/Clara-z/CSCI467-final-project.

https://github.com/Clara-z/CSCI467-final-project

References

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dixon, L., Li, J., Sorensen, J., Thain, N., and Vasserman,
L. Measuring and mitigating unintended bias in text
classification. In AAAI/ACM Conference on Al, Ethics,
and Society, pp. 67-73, 2018.

Kennedy, B., Jin, X., Davani, A. M., Dehghani, M., and
Ren, X. Contextualizing hate speech classifiers with
post-hoc explanation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 5435-5442, 2020.

Sharengaraju, U. Dynamically generated hate speech
dataset. Kaggle, 2021. URL https://www.
kaggle.com/datasets/usharengaraju/
dynamically-generated-hate-speech-dataset/
data.

https://www.kaggle.com/datasets/usharengaraju/dynamically-generated-hate-speech-dataset/data
https://www.kaggle.com/datasets/usharengaraju/dynamically-generated-hate-speech-dataset/data
https://www.kaggle.com/datasets/usharengaraju/dynamically-generated-hate-speech-dataset/data
https://www.kaggle.com/datasets/usharengaraju/dynamically-generated-hate-speech-dataset/data

