
Machine Learning on Stock Data to Inform Future Investment Choices

Rohan Gupta Rithik Pothuganti Alex Gao

Abstract
The task of this project is to use various machine
learning methods to predict the probability dis-
tribution for a stock’s future returns. Along the
way, we explored other questions that were ad-
jacent to the task, for which we used different
machine learning methods to solve. We ended up
using a variety of supervised learning methods
as well as an unsupervised learning method on
the past return data for multiple stocks, each of
which yielded results that were not particularly
robust. Our ultimate finding is that while we did
try many different models and combinations of
hyperparameters, the problem of finding a pattern
that could predict future stock prices based on
past return data is a complex one that we were not
able to find a convincing solution for during this
project based on our tests.

1. Introduction
In investment theory as well as betting, the fair price of an
asset, such as a stock, is its expected value, or the sum of
its expected values. Many in finance use the “Discounted
Cash Flow” formula, which is essentially a sum of the
future expected payoffs of an asset. However, many in
the investment world simply use one probability and one
payoff value and sum them up like so:

∑n
t=1Pr(xt)•xt =∑n

t=1EV(xt), where t represents how far in the future the
payoff is expected and x represents the payoff in dollar or
percentage values. The issue with this current approach is
that it is discrete and oftentimes not very accurate as one
probability and one payoff do not capture the full range
of outcomes for a stock’s payoff. The goal of this project
is to use machine learning and the stock’s past return and
price data and other metrics to create an accurate and more
continuous probability distribution that captures the full
range of payoffs for a stock for however many years in the
future you’re hoping to predict. This helps derive a more
data-driven and accurate prediction that we can use for the
expected values that will determine the fair price of a fi-
nancial asset, helping traders to make buy and sell decisions.

At the time of the final report, our goal has deviated

slightly, as we chose related questions to answer based on
what each machine learning method we used was best suited
for. We chose to test models to answer four questions:

1. Can we accurately assign simple buy or sell labels?

2. Can we accurately assign one of the five labels from
sell, underweight, neutral, overweight, and buy?

3. Can we predict the numerical return value?

4. Can we construct the probability distribution of future
returns, our original question?

Since the Midterm Report, we have tested a combination
of supervised and unsupervised learning models and have
achieved varied results. Given that unsupervised learning
finds a pattern in the data without labels, we will discuss the
pattern our unsupervised learning method, Gaussian HMM,
found and what we think it means rather than testing its
accuracy as we did for the labeled supervised methods. For
the Midterm Report, we tested linear and logistic regres-
sion. Through our study of existing related work, however,
we found that deep learning models were more extensively
used for stock price/return prediction. Thus, we incorpo-
rated deep learning models into our research, including
Feed-forward Neural Networks, Recurrent Neural Network
(RNN), Long Short-term Memory Networks (LSTM), and
Gated Recurrent Unit Network (GRU). Furthermore, we ex-
plored other supervised learning methods including Random
Forest and K-nearest Neighbors (KNN). The specific unsu-
pervised method we used was an Hidden Markov Model
with Gaussian emission probabilities. There is one section
for the supervised methods and one section for the unsuper-
vised methods that each contain results and a discussion of
those results.

2. Related Work
There is existing work related to stock predictions based on
analyzing a list of stock prices as time-series data. We’ve
found five main papers that try to solve similar problems.

“Stock Price Prediction using Time Series, Econometrics,
Machine Learning, and Deep Learning Models” predicts
future stock prices using a combination of time series, econo-
metric, and learning-based models (Chatterjee et al., 2021).



The study focuses on three important stocks that represent
the IT, Banking, and Health sectors. The authors develop
six different models and compare their performance to de-
termine which works best in each sector. The models used
include Holt-Winter Exponential Smoothing, ARIMA, Ran-
dom Forest, MARS, RNN, and LSTM. The authors found
that each method worked well for a specific sector — no
method was clearly the best in all sectors, so it was hard
for them to generalize a method that would work in other
cases. Additionally, they still had relatively high RMSEs.
Our approach differed in that we used only 10 tech stocks
and only used the past 10 years of available data for each,
while the authors of this paper used 3 stocks in 3 different
sectors and tested each method on each of those stocks.

“Research on Stock Price Time Series Prediction Based on
Deep Learning and Autoregressive Integrated Moving Av-
erage” uses machine learning models to predict the time-
series data of stocks (Xiao & Su, 2022). The authors apply
the ARIMA and LSTM models to train and predict stock
prices and stock price subcorrelation. They evaluate the
proposed model by several indicators and find that the en-
semble model of ARIMA-LSTM outperforms other bench-
mark forecasting methods. The paper also discusses the
challenges of stock market forecasting given the nonlinear-
ity, volatility, and complexity of the market, and the use of
machine learning and deep learning techniques to address
this challenge. Our approach differed in that we didn’t use
the SP 500 index like they did and used other traditional
financial forecasting models like the Full-Sequence Model
and Single-Index Model to compare the ARIMA-LSTM
ensemble to, which we did not do.

“Stock Price Prediction Using Machine Learning and Deep
Learning Frameworks” uses daily stock price data at five
minutes interval of time from the National Stock Exchange
(NSE) of India (Sen, 2021). They then aggregate the granu-
lar data to build the forecasting framework for stock prices.
The paper presents the performance of eight classification
and eight regression models, including one deep learning-
based approach, using data of two stocks listed in the NSE
- Tata Steel and Hero Moto. The authors believe that their
approach will provide several useful pieces of information
to the investors in the stock market who are particularly in-
terested in short-term investments for profit. Our approach
differs in that we are aiming to find the return over a longer
time period, specifically a year, while the authors of this
paper are aiming to essentially do short-term day trading.
They did end up using a few of the same models we did,
such as KNN, Random Forests, but applied them to different
goals. The challenge is that they still cannot generalize the
data to more than 2 stocks since they only used 2 stocks as
the data and that too in the Indian stock market.

3. Dataset and Evaluation
We used financial market databases like NASDAQ and Cap-
italIQ to get our daily stock price data. For the Midterm
report, we only used Apple. For the Final report, we focused
on more big tech stocks, specifically Apple, Amazon, AMD,
Alphabet, Meta, Microsoft, Netflix, Nvidia, Qualcomm, and
Tesla. We chose this based on their similarity with each
other, which translates to similar stock market behavior.

The features are the past returns of the stock up until that
point, and so far we’ve chosen the past 3-month, 6-month, 1-
year, 2-year, 5-year, and 10-year returns. Because we would
need at least 1 year from a specific date to have occurred
already, we don’t use data within the past year since it
wouldn’t have the 1 year forward return. Anything before
a year ago would be valid data. We currently are using 10
stocks, of which each has 2,345 days worth of trading data
from 2014-2023. The data can also be “featurized” to add
more polynomial degrees. For instance, a degree of 2 would
result in 12 features — 6 from the original features for the
return windows and 6 from those original features squared.
The degrees would be a hyperparameter we can test in the
development set.

For the Final report, we modified our data from the Midterm
to contain one more label which we call the “rating”, which
contains the 5 common financial industry ratings of stocks of
“sell”, “underweight”, “neutral”, “overweight”, and “buy”.
We did this because we felt just “buy” and “sell” may lead to
underfitting in classification tasks, like softmax or our neural
network which are explained later. For each example, the
label was a 3d tuple that contained the 1-year future return
from the specific date to a date that already has occurred
as the first element, a “buy” or “sell” label as the second
element based on if the first element is positive (“buy”) or
negative (“sell”), and 1 of 5 ratings as the third element,
denoted as 0 for “sell”, 1 for “underweight”, 2 for “neutral”,
3 for “overweight”, and 4 for “buy”. We assigned that rating
element based on the 1-year future return as follows:

• If the 1-year future return < -10%, the rating is “sell”

• If the 1-year future return is between -10% and 0%,
the rating is “underweight”

• If the 1-year future return is between 0% and +10%,
the rating is “neutral”

• If the 1-year future return is between +10% and +20%,
the rating is “overweight”

• If the 1-year future return > +20%, the rating is “buy”

We chose these classes to obtain a better distribution of
classes. Stocks have performed extremely well from 2013-



2022, so we used these classifications to attempt to create a
more balanced dataset.

We chose to split the data into training and development
sets by allocating the first 50% of examples, which are
chronologically ordered, as the training set, the next 25% as
the dev set, and the remaining 25% as the test set. We also
decided not to shuffle the data to maintain the time-series
nature of the data. Moreover, we found in our midterm
report that shuffling the data causes overlap in data that is
on neighboring days. E.g. if May 1st 2022 is in the train
set and May 2nd 2022 is in the dev set (both have trailing
return data that is almost identical).

The tables below shows the proportion of labels in each
split.

Test set:
Rating Proportion
0 0.3591
1 0.0671
2 0.0856
3 0.0752
4 0.4127

Dev set:
Rating Proportion
0 0.0723
1 0.0745
2 0.0814
3 0.0725
4 0.6991

Train set:
Rating Proportion
0 0.1346
1 0.0681
2 0.0835
3 0.1145
4 0.5990

We used each supervised method’s natural evaluation met-
rics to test the accuracy of prediction. We used RMSE for
Linear Regression, Recurrent Neural Networks, Random
Forests, and K-Nearest Neghbors, and simple accuracy for
Softmax Regression and Neural Network-based classifica-
tion methods. However, for our Gaussian HMM, because it
is an unsupervised learning method, it was difficult to find
a way to test how accurate it would be in the real world.
We include in the Unsupervised Methods Experiments
section the top stocks we felt had the best fit with the Gaus-
sian HMM based on how close one of the states’ means was
to representing that “neutral” rating, which we defined as
between -5% and +5%, and how close they were in iden-
tifying the hype of tech stocks during COVID as a unique

state. While this is more subjective and requires knowledge
about specific financial events, it is still rooted in the idea of
checking if the HMM was able to identify unique states for
a stock. This was our way of evaluating how good the HMM
was at finding states relevant to the use case for investors.

4. Methods
For the supervised learning models, we used Linear Regres-
sion, Softmax Regression, Simple Feed-forward Neural Net-
work, RNN, LSTM, GRU, KNN, and Random Forests. We
changed our Logistic Regression method from the Midterm
report to instead use Softmax Regression since it allows
multi-class classifications. For each example, we used the
past 3 months, 1 year, 2 years, 5 years, and 10 years return
as features. Each example has a 3d tuple: (1 year future
return, buy[1]/sell[0], rating) and uses at least one of those
elements as the label depending on the method. Below is a
table showing the output of each method for each supervised
method we used.

Method Output Hyperparameters

Linear Re-
gression

Predicted
Future
Return 1
year return

degrees

Softmax
Regres-
sion

Predicted
Rating degrees

Neural
Network

Predicted
Rating

degrees,
dropout, activa-
tion function,
learning rate

RNN
Predicted
Future 1
year return

no. of layers, no.
of hidden units,
epochs, batch
size

LSTM
Predicted
Future 1
year return

no. of layers, no.
of hidden units,
epochs, batch
size, learning
rate, decay,
momentum

GRU
Predicted
Future 1
year return

no. of layers, no.
of hidden units,
epochs, batch
size, learning
rate, decay,
momentum

KNN Predicted
Rating neighbors

Random
Forests

Predicted
Rating estimators



We tested our methods on many stocks. This allowed
us to ask a new question about whether we could learn
unique parameters for each stock rather than one set of
parameters that would be applied to all stocks based on
some aggregation of all the stocks’ return data. All the
supervised methods above used the aggregate dataset to
learn one set of parameters to apply to all the similar tech
stocks we chose to look at.

We only used one unsupervised method — Gaussian
HMMs — which we used on each stock to find unique
parameters for each state rather than one set of parameters
for all the stocks. We only varied the number of states to fit
to the dataset as our hyperparameter, and kept our number
of iterations at 50 since changing it to a higher number did
not change what values the HMM converged to. Our goal
with the Gaussian HMMs was to find states to assign each
example where the observation was the 1-year future return,
which is the first element of the label in our dataset. This
method yielded results that were probably the most inline
with our original goal to learn a probability distribution
— assuming it is Gaussian — for a stock’s future returns.
Given that we learn emission probabilities, where our
emissions are 1 year future returns, as well as the other
parameters, we can find different probability distributions
for observing each 1 year future return for each state the
HMM finds in our stock return data. As mentioned in the
Dataset and Evaluation section, we had to evaluate the
reasonableness ourselves of the outputs of the HMM for
each stock relative to how states were assigned to each
stock over the past 10 years.

5. Supervised Methods Experiments
We ran several experiments for Linear and Softmax Re-
gressions, Simple Neural Networks, Random Forest, KNN,
Simple RNN, LSTM, and GRU by varying the hyperparam-
eters. We compiled return data for 10 popular tech stocks
from 2013-2023 for our data. We used our models to predict
the future 1-year return of the stocks and compared them
with the actual return values, or the buy/sell classifications
based on the future 1-year return.

Linear regression Results

Default values used for hyperparameters were LR=1e-2,
Degree=1, iters=400. Below is the result for Apple stock.
Best results came from Degree=3. Test RMSE=4.54.

Degree Dev
rmse

1 1.334
2 1.307
3 1.28
5 1.38

Softmax Regression Results

We found that accuracy for iters converged at approximately
iters=200. The best results came at degree=4. The test
accuracy for this configuration was 0.345.

Degree Train Acc. Dev Accuracy
1 0.602 0.493
2 0.610 0.521
3 0.610 0.504
4 0.606 0.524
5 0.611 0.508
6 0.605 0.310

Simple Neural Network Results

We got the best results with degree=1, hidden layer size=128,
lr=1e-3, a tanh activation function, and a dropout rate of
0.5. We also experimented with different numbers of hidden
layers and the connectivity of layers. We used a hidden
dimension of 128 and a 5-layer neural network for our final
configuration. The test accuracy was 0.525.

Learning Rate Dev Accuracy
1e-1 0.699
1e-2 0.699
1e-3 0.472
1e-4 0.472

We found that learning rates > 1e-3 caused the model to
overfit, and predict ”buy” every time (this happened even
with a dropout rate of 0.9), so we decided to choose an lr =
1e-3.

Dropout Rate Dev Accuracy
0.1 0.355
0.3 0.472
0.5 0.564

Random Forest Results

We found that degree did not significantly affect results here,
so we used degree 1 for simplicity. The best results came
with 10 estimators. The test accuracy for this configuration
was 0.337.

Estimators Dev Accuracy
10 0.598
20 0.548
50 0.569
100 0.588

K-Nearest Neighbors Results

We limited the number of features by using degree=1. We
obtained the best results by using Neighbors=500. The test
accuracy for this was 0.4112.



Neighbors Dev Accuracy
10 0.2875
20 0.2937
50 0.4826
100 0.6218
200 0.6705
300 0.6878
500 0.6974

Simple Recurrent Neural Network Results

We used a Simple RNN that had 3 hidden layers with 32
hidden units each layer and tanh activation function. that
minimizes the mean squared error. Using the Dev dataset,
we found the optimal hyperparameters of 100 epochs and
a batch size of 150. We normalized data using a Min-
Max scaler. Below is our prediction of the future 1-year
return on the Test dataset compared to the actual return
value. The RMSE for the simple RNN model is 1.45.

LSTM Results

We used an LSTM that had three hidden layers with 50
hidden units each layer, and a tanh activation function that
minimizes the mean squared error. Using the Dev dataset,
we found the optimal hyperparameters of 50 epochs, a
batch size of 150, a learning rate of 0.01, a decay of 1e-
7, and a momentum of 0.9. We also used dropout lay-
ers with a 0.2 dropout rate to prevent overfitting. Be-
low is our prediction of the future 1-year return compared
to the actual return value. The RMSE for LSTM is 1.7.

GRU Results

We used a GRU that had three hidden layers with 50 hid-
den units in each layer, and a tanh activation function that
minimizes the mean squared error. Using the Dev dataset,
we found the optimal hyperparameters of 50 epochs, a
batch size of 150, a learning rate of 0.01, a decay of 1e-
7, and a momentum of 0.9. We also used dropout lay-
ers with a 0.2 dropout rate to prevent overfitting. Be-
low is our prediction of the future 1-year return compared
to the actual return value. The RMSE for GRU is 1.58.

Best Model

The best result for the classification of the five ratings was
achieved by the Simple Neural Network with an accuracy of
0.525. The Simple RNN achieved the best result for direct
return predictions with a test RMSE of 1.45 and a graph
more closely matching the actual return values, which was
lower than the linear regression RMSE.

6. Supervised Methods Discussion
Despite having a large dataset, it was difficult to implement
a model that performed well. We implemented Softmax
and Linear regression as our baseline approaches. Linear
Regression and the related work we looked into showed
that it was extremely difficult to predict the future returns of
stocks with desirable accuracy, so we focused the majority
of our supervised approaches on predicting a buy rating.

In general, our supervised dataset drawn from 10
years of a bull cycle for each stock, meaning most of the
data was classified as ”buy” (positive 1 year forward return)
of which many were labeled ”strong buy” (10+% 1 year
forward return). This means that a model could just predict
”strong buy” and achieve a decent accuracy, at least on the
classification models. We faced this issue when using a
high learning rate on the simple neural network, and with
our KNN implementation. The KNN ended up predicting
”strong buy” for 99.8% of the test set. This likely occurred
as when n-nearest neighbors was set to a high number, it
just predicted the majority label of the test set, which was



”strong buy.”

With the classification models, we found that sim-
pler models were ineffective. Excluding the simple neural
network and KNN, the other models failed to do better than
our baseline softmax regression. KNN only outperformed
softmax when it converged to predict ”strong buy” every
time. This issue likely stems from the distribution of data
in our dataset. To alleviate this we would need to include
older stock data that doesn’t just consist of this past 10-year
bull run. Another option would be to pick stocks that gave
us our desired distribution. But every industry is extremely
different, and it’s hard to decide how to group stocks
together. Designing such a dataset is another research
problem altogether.

For directly predicting the 1-year future return, we
found that RNN performed the best, since stock return
data is sequential in nature with serial connectivity. When
training the RNN models, we also realized that it was
necessary to normalize the dataset to achieve better
accuracy, thus we used the MinMax scaler. However,
testing the different degrees of data proved to be infeasible
as it would require exponentially more computing power,
which our computing resources could not achieve. Thus,
we used the original dataset with a degree of 1. We were
surprised to find that the simple RNN model performed
better than the LSTM and GRU models, with an RMSE
of 1.45, which is also much better than Linear Regression
which had an RMSE of 4.54. We struggled with finding an
explanation of why LSTM and GRU performed worse, as
we had limited knowledge of the two models. The models
in general also did a much job of predicting the return of the
stock in the sideways market compared to abnormal market
conditions, as we expected. For example, the models did a
much worse job when predicting the stock returns during
COVID, when the market experienced abnormal overall
returns.

Despite the drawbacks of our dataset, the simple
neural network performed substantially better than our
softmax regression, and the simple RNN performed better
than linear regression. This is promising and leads us to
believe that there is some sort of underlying pattern in past
returns and the 1-year future return.

7. Unsupervised Methods Experiments
As mentioned earlier, we only used one supervised method
— Gaussian HMMs — given its relevance to time-series
data and due to one of its learned parameters — emission
probabilities — being very close to our initial question
regarding finding the probability distributions of future
returns for each stock. The hyperparameter we varied was

the number of states as we kept the number of iterations
the same at 50 since that was sufficient enough to lead
to convergence. For each stock, we treated its 1 year
forward returns as the observations of the HMM. We tried
to fit 5 states to the data, one for each of the 5 ratings
“sell”, “underweight”, “neutral”, “overweight”, and “buy”.
However, this provided to be overfitting, as 2 of the states
ended up having nearly identical means and covariances,
which meant certain examples were essentially randomly
being assigned to one of those 2 states. We reduced the
number of states to fit the data to 4 and the results were
much more reasonable as it segmented each example’s
1-year forward return into 4 clearly different states. The
best 3 stocks that fit the criteria mentioned for the HMM in
Dataset and Evaluation are NFLX, META, and QCOM.
Below are their learned means, covariances, and charts of
each 1 year forward return plotted against its date and an
assignment of each learned state to its date.

NFLX

State Mean Covariance
0 0.01561443 0.02955345
1 0.545472 0.01699349
2 1.07640732 0.05996554
3 -0.5866326 0.00255361

QCOM

State Mean Covariance
0 0.19178012 0.00436335
1 -0.21206793 0.00651778
2 0.59063778 0.02886395
3 0.01418251 0.0017031



META

State Mean Covariance
0 0.31146542 0.00276778
1 -0.41539433 0.03290102
2 0.4919898 0.013592
3 0.06768417 0.01061731

Given that we only tried this one unsupervised learning
method, we don’t have other unsupervised learning methods
to compare it to, however the next section discusses the
results in regards to our more customized evaluation criteria.

8. Unsupervised Methods Discussion
We found these 3 stocks to have the most interesting
results because it shows that the HMM, assuming Gaussian
emission distributions, was able to learn a state with the
mean close to 0%, or neutral without that mean being the
lowest mean across all the states. In the 3 stocks above,
NFLX’s state 0 and QCOM’s state 3 means very close to
0 while META’s state 3 mean was just 1.7% greater than
our chosen neutral state upper bound of +5%. State 1 for
NFLX, state 2 for QCOM, and state 2 for META each also
successfully were able to identify “hype”, i.e. extremely
large values, during the time of COVID. While this is
promising, the parameters are highly dependent on the 10
year data we collected for each stock.

We chose 4 states based on their use for the invest-
ment industry. We imagine that it would be useful
information to know historically how a specific stock’s 1
year future returns have looked based on what state it’s in.
For instance, if we look at META’s stock above, we see that
towards the end, it entered the green “neutral” state (3) from
the red “sell” state (1). An investor or trader could say that
in a year, the stock is likely to fall between the mean for the
green state and some range based on that states standard
deviation. This is assuming the future returns for the stock
follow a Gaussian.

In summary, the unsupervised nature of HMMs makes
it hard to test the accuracy of the states. However,
using common knowledge and some contextual financial
knowledge, we can see that for some of the stocks, it can
consistently assign states to values that could make sense,
which could help investors have an idea of the potential
returns a stock could get if they believe it’s in a certain
HMM state based on a 10 year window of historical data.

We had expected it to model some stocks well and
some not so well. It only really found a state that was truly
neutral for only 3 stocks assuming a Gaussian distribution,
so out of the 10 stocks we tested, we could say it was 30%
accurate in identifying relevant states to our goal and to a
financial context.

Another limitation of this method is naturally that it
assumes Gaussian emissions. We only tried this method
since we learned GMMs in class and felt like we understood
that probability distribution the best, and in 3 of the stocks,
it seems to do a decent job in finding certain states. It
is quite possible that returns do not follow a Gaussian
distribution.

9. Conclusion
In this project, we tried to answer complex questions about
financial data. We wanted to find out if there was a way to
model the probability distribution of a stock’s future returns
simply based off the past returns for the stocks, but we were
not able to successfully do so. We ended up learning how the
machine learning methods could help us answer different
but related questions about our problem. We learned that in
order to achieve better results, we’d likely have to refine our
data and include more features than returns like revenues
or trading volumes or news headlines. All that would have
been quite a complex and noisy set of data to find and refine
and draw conclusions from, as the entire financial industry
exists to do this and still is not able to do it with consistency.
Not to mention, the dataset we used was from the last 10
years, which have been, on the whole, quite good for tech
stocks, which means that there is an inherent trend within
our data that could have biased our results. We also had not
tried more unsupervised methods since we thought HMMs
were the best for time-series data, and we also did not try
reinforcement learning because we were taught that much
later on. We did find that some of our methods were able to
find some interesting details about individual stocks, which
would prompt further investigation. That being said, our
best classification model ended up being a simple neural
network, with an accuracy 52.5%, which is better than
expected for the classification of stocks. We also found
more success with the simple RNN for predicting the exact
target return compared to the Midterm’s linear regression.

Additionally, in real-world quantitative trading, people only
strive to be correct a little bit over 50 percent of the time with
their models, which can already lead to significant gains.
In summary, we learned that this task is quite difficult but
in trying to solve it, we became more familiar with various
machine learning methods and learned how to experiment
with them.



10. Codebase
Here’s the github link to our codebase:

https://github.com/rithikp06/csci467-project

Instructions to run our models are in the README, and the
stock data we used can be found in the data folder

References
Chatterjee, A., Bhowmick, H., and Sen, J. Stock Price Pre-

diction Using Time Series, Econometric, Machine Learn-
ing, and Deep Learning Models. PhD thesis, Department
of Data Science Praxis Business School, 2021.

Sen, J. Stock Price Prediction Using Machine Learning and
Deep Learning Frameworks. PhD thesis, Department of
Analytics and Information Technology Praxis Business
School, 2021.

Xiao, D. and Su, J. Research on Stock Price Time Series
Prediction Based on Deep Learning and Autoregressive
Integrated Moving Average. PhD thesis, School of Fi-
nance, Central University of Finance and Economics,
Beijing, China, 2022.

https://github.com/rithikp06/csci467-project

