
Music Genre Classification with Machine Learning

Lorena Yan Ryan Wang Tianhao Wu

Abstract
This paper addresses the task of music genre classification
by comparing and contrasting different machine learning
methods. As the baseline, the first method of this paper
utilizes a softmax regression approach to genre classi-
fication that achieves a 24.24% test accuracy. Deeper
inspection into the results reveals the need for techniques
that can capture more fine-grained details while being more
perceptive of global patterns. The second method involves
a single CNN model that achieves 57.5% test accuracy.
An improvement to this approach ensembles several CNN
models using majority vote, which resulted in a 63.6% test
accuracy. Manual error analysis reveals that both these
CNN-based approaches struggle to classify spectrograms
that are not representative of their genres. In these cases,
CNN-based models fail to extract useful information
from the spectrograms, which is the key limitation of
this method. The third approach is to train Wav2Vec
pretrained models with an ensemble-based learning method.
Specifically, two models, a weaker model with smaller
number of parameters for capturing biases and a main
model for capturing more robust features, are combined
together. This approach obtains a test accuracy of 74.8%.
Although Wav2Vec2-based model still has difficulties
in identifying music genres with high instrumentation
and melody variations (such as country music), this
attention-based model still achieves a relatively higher
accuracy compared to the baseline and the CNN-based
method. Github repo for this project can be found
here: https://github.com/Lorenayannnnn/
csci467_music_genre_classification.

1. Introduction / Problem Statement
With the digitization of modern society, more and more
people have begun using internet services like Spotify or
Apple Music to listen to their favorite songs. For these
companies, being able to understand the musical tastes of
its users has thus become a critical skill in order to keep
their subscribers hooked to the service (by, for example,
recommending songs that falls in a music category that the
user likes).

Because of this demand, it thus becomes crucial to design
a system that is capable of categorizing music based on its

audio contents. This way, predicting musical preference
turns into something as simple as looping through a user’s
playlist, categorizing each song in the list, and returning the
categories with the most amount of songs inside the playlist.

Specifically, the system of categorizing music based on its
audio contents should have the following inputs and outputs:

Input: Audio content. Note that this does not always mean
the raw audio file. Audio content can take a wide variety
of forms. In this project, 3 different representations of
audio are taken as inputs for our model: raw audio, mel
spectrogram (a graphical representation of a recording), and
other relevant meta data of the audio such as tempo (the
speed at which the audio is played)

Output: Predicted musical category

We aim to address this problem via utilizing various ma-
chine learning tools and comparing and contrasting their
performances.

Brief summary of final results:

Baseline: 24.24% test accuracy with softmax regression.

CNN: 57.5% test accuracy with a single CNN model, and
63.6% with ensembling.

Wav2Vec2-based Model: test accuracy of 74.8%.

2. Related Work
As one of the most fundamental music information retrieval
tasks, music genre classification has been studied with differ-
ent modal data, which mainly includes visual representation
of the audio, such as spectrogram that illustrates spectrum
of frequencies of a signal as it varies with time, and lyrics
(Li et al., 2022). Existing works can be mainly classified
into 2 categories: (1) model based on RNN and attention
and (2) CNN-based model.

2.1. Bidirectional-RNN(BRNN) and Attention

This method has been applied together to process input spec-
trograms of the audios (Yu et al., 2020). In this approach,
spectrograms generated at different temporal steps of the
audio via short-time Fourier Transformation are treated as
input sequences of spectrum vectors. The sequences are

https://github.com/Lorenayannnnn/csci467_music_genre_classification
https://github.com/Lorenayannnnn/csci467_music_genre_classification


passed into BRNN and attention-based encoder and the re-
sulting hidden representations are passed to the classification
head for producing genre prediction. One of the challenges
that they have faced is the bad performance when the bidi-
rectional RNN and attention layers are stacked together in
a linear fashion for processing the inputs. In this case, the
performance of the attention layer highly depends on the
distributions learned and produced by the BRNN. Therefore,
another model that arranges BRNN and attention layer in
parallel is proposed and obtains a better performance of
90% accuracy. Inspired by the attention mechanism, we
decide to adopt Wav2Vec2, a transformer-based model that
is pretrained for processing human speech audio, to learn ex-
tracting underlying features of input music audios (Baevski
et al., 2020). Similar to the existing approach, we also break
down the input audio as a sequence of vectors by convert-
ing audios from analog to digital forms. Nonetheless, the
Wav2Vec2 model applies both 1D CNN and 12 attention-
based encoder layers stacked together for producing latent
representations of the inputs. Ideally, our model should
be able to learn to learn a more robust latent space of the
audio features if there is enough data with high quality for
training.

2.2. Convolutional Neural Network (CNN)

CNNs have been widely used to process visual inputs. In the
context of music genre classification, a model based only on
CNN with different dimensions and pooling layers has been
experimented(Pelchat & Gelowitz, 2020) and has obtained
a test accuracy of 85%. Another model architecture named
bottom-up broadcast neural network was proposed in 2020
(Liu et al., 2019). With CNN-based broadcast module for
capturing low-level features, the model obtained an accuracy
of 93.9% on the GTZAN dataset, indicating that capturing
both low and high level features is important for genre pre-
diction. This was the inspiration for why transformer-based
models with multiple layers were considered and analyzed
in this study.

The main challenge they faced is that the number of an-
notated music recordings per genre class is often limited.
Hence, it’s not easy to train a robust CNN model from few
labelled data.

Comparing our final approach with the state-of-art model,
they use much more sophisticated broadcast module that al-
lows to capture more features. Also, they use three different
datasets to compare and contrast the results.

3. Dataset and Evaluation
3.1. Dataset

We use GTZAN, a popular music genre classification dataset
from kaggle, to develop our model. It contains a collection

Table 1. Num of Samples in Train, Dev, Test Set

GENRE TRAIN DEV TEST

POP 70 20 10
METAL 70 20 10
DISCO 70 20 10
BLUES 70 20 10
REGGAE 70 20 10
CLASSICAL 70 20 10
ROCK 70 20 10
HIPHOP 70 20 10
COUNTRY 70 20 10
JAZZ 70 20 9

TOTAL 700 200 99

of 1000 audio files, each of length 30 seconds, that are
evenly categorized into 10 music genres. It also provides
the converted mel spectrograms and two CSV files that
characterize discrete feature values of the audio files.

3.2. Data Split

The dataset is split into training (70%), development (20%),
and tests (10%) sets. Table 1 shows number of samples of
each genre in train, dev, and test dataset.

3.3. Evaluation

Because data samples are evenly distributed among different
genres, we decide to use accuracy as the main metric to
evaluate our model on the dataset.

3.4. Note

We use the same dataset and evaluation process for the final
report, so no changes is made.

4. Methods
4.1. Baseline

Our baseline model aims to categorize music based on their
spectrograms using softmax regression.

4.1.1. DATA PREPROCESSING

The model receives spectrogram images as input. A spectro-
gram is a visual representation of the spectrum of frequen-
cies of a signal (in this case, an input audio file) as it varies
with time. Spectrograms include information about the au-
dio’s frequency (ie pitch), rhythm, and dynamics (loud/soft).
See figure 1 (ignore the green box for now).

For our baseline, we propose a softmax regression approach
to classification. Since all audio files have the same time
length (30s), and since the range of frequencies are unified,



Figure 1. Spectrogram of a single audio file for the first 10 seconds.
Time, frequency, and decibels are on the x, y, and z-axis respec-
tively

this means that all spectrograms have the same pixel dimen-
sions. Specifically for this study, the spectrograms have
dimensions 218 (y-axis) x 336 (x-axis) x 3 (rgb). Thus, we
will feed spectrograms into the model in the form of tensors
of dimensions 218x336x3, where each entry will be a value
from 0 to 255. Thus, if we have N images, the input training
dataset will have dimensions N x 218 x 336 x 3.

We normalize the input with dimensions N x 218 x 336 x 3
as follows:

Normalized[i,j,k,l] =
Input[i,j,k,l] −mean(Input[:,j,k,l])

std(Input[:,j,k,l])

with i being the sample index, j and k being the row and col
index for the ith sample, and l being the index that chooses
between R, G, or B values in the pixel located at (j, k) in
sample i.

In essence, we are normalizing the RGB values of a given
pixel position across all the training examples to have a
mean of 0 and a standard deviation of 1. We then replace
all NaN values (likely due to stdev = 0) with 0.

4.1.2. MODEL STRUCTURE

See Figure 2. Our baseline is composed of two layers. The
first layer encodes RGB values into a single value, and
outputs Activation 1 after applying Tanh. The second layer
takes in values from Activation 1 and runs them through a
fully connected layer, which is then run through softmax
to achieve prediction results. Specifically, each layer is as
follows:

Initially, every forward pass receives spectrograms in the
form of tensors with dimension 218x336x3. For the first
layer, the model applies a kernel-like transformation to each
pixel in order to encode its three input RGB values into a
single value. Specifically, we use a 3x1 linear layer that

Figure 2. Structure of Baseline Model

is dot producted with the RGB values of each pixel in the
input tensor. The resulting output is a tensor with dimension
218x336, where each output value corresponds to the RGB
encoding of a particular pixel. Note that the same four
parameters in this 3x1 linear layer are used to encode all
pixels. Note also that we can view this 3x1 linear layer as
attempting to learn an encoding of RGB values that offers
the ”best” single-value information for genre prediction.

The output of the 3x1 linear layer is then passed through the
tanh function to obtain values for Activation 1, which will
be a tensor of shape 218x336.

Next, given this 218x336-dimension Activation 1 input, we
then split the tensor values into k columns by grouping the
336 indexes that make up the horizontal dimension into k
groups. Let m = 336/k represent the number of previous
columns that each grouped column has. Graphically, an
example of such a column group is illustrated in Figure
1. Through experimentation, we choose k = 112 and m
= 3 for the grouping hyperparameters as it yields the best
results. This is expected, since having a higher k allows the
baseline model to learn more fine-grained patterns across
the columns of the spectrogram.

For each column i, we take the mean of the pixels that
are located within this column, and output the mean as
the ith index of the output. Note that the output after this
transformation will have a shape of k (one output for each of
the k columns). Call these output values Summation Output.

Finally, we pass this k-lengthed Summation Output through
a linear layer, which then is then passed through the Cross
Entropy Loss with Pytorch’s Adam optimizer to run back
propagation.

4.2. Method 1: CNN

CNN is one of the most standard methods to process/classify
multi-dimensional data such as images. In this method,
spectrograms from the GTZAN dataset are fed as input
images into the CNN during the training process. Ideally,



the model should learn distinct features and patterns for the
spectrograms of each music genre.

4.2.1. DATA PREPROCESSING

The original spectrograms contain a margin that is white
(with RGB value 255, 255, 255). This could dramatically
influence the ability for kernals to learn meaningful patterns
from the actual graph, since they are always convolved with
a thick margin of white pixels that each have the maximum
possible RGB values. Therefore, we crop the margins of
these spectrograms to only keep parts that have useful in-
formation about the songs. Because of the cropping, this
also means that the CNN model needs extra paddings in its
convolution layers.

4.2.2. MODEL STRUCTURE

Figure 3. Structure of CNN Model

The figure above outlines the architecture of the CNN model.
Cropped spectrograms serve as the inputs to the model.
Then the inputs are passed through several layers of convo-
lution, ReLU, and MaxPooling. One dropout layer is added
to reduce overfitting. Afterwards, data is flattened and fed
into fully connected layers with ReLU and dropout. Finally,
a softmax layer is applied to make predictions.

4.2.3. HYPERPARAMETERS

The following hyperpameters are considered when selecting
the final model.

• Batch size: Smaller batch sizes can help improve the
generalization performance of the model, but in some
cases, larger batch sizes can lead to better accuracy.

• Learning rate: A high learning rate can cause the train-

ing process to converge faster. However, it could also
lead to more suboptimal solutions. On the contrary,
a slow learning rate takes more time but may lead to
better results.

• Kernel: Larger kernel sizes are better for detecting
larger, more complex features, while smaller kernel
sizes are better for detecting smaller, more local fea-
tures.

• Padding: With proper padding, the pixels around the
edges of the image are used more frequently in the
convolution operation, which can improve the overall
performance.

• Stride: Stride affects the receptive field of each neuron
in the network. Large strides may help the network
capture more global features in the input image.

• Dropout probabilities: Dropout reduces overfitting.

• Number of neurons in hidden layer: Determine the best
trade-off between model complexity and performance.

• Number of Conv+ReLU+Pool: Same as above.

4.2.4. ENSEMBLING

For the final report, an ensemble of six models is proposed
to improve the accuracy of genre prediction for a given test
example. The ensemble consists of the two best-performing
models from a set of CNN models with dev accuracy of
65.5% and 70.5%, respectively, and four new models with
different architecture choices. Despite the new models hav-
ing dev accuracies around 60%, they were included in the
ensemble to increase the diversity of the models. The train-
ing process for the new models followed the same procedure
as the previous models. The final prediction is determined
by a majority vote of the six models, where a consensus is
reached if a genre receives at least three votes. If there is
no consensus, the prediction of the model with the best dev
accuracy is used.

Ensembling is expected to address the limitations of the
single CNN model approach used in the previous midterm
report, particularly in cases where a model is ineffective in
predicting certain genres due to potential spurious correla-
tions. By using an ensemble of multiple CNN models that
capture distinct features of different genres, the collective
wisdom of the models can be leveraged to produce more
accurate and robust predictions.

4.3. Method 2: Wav2Vec2-based Model

Inspired by the previous approach of applying attention and
treating audios as sequences of input vectors extracted at
different temporal steps (Yu et al., 2020), we think that



utilizing a relatively more sophisticated, attention-based
model can result in high performance with better capability
of extracting low and high level features within the audios.
Wav2Vec2, one of the current state-of-the-art models for au-
tomatic speech recognition, is selected for our task (Baevski
et al., 2020). Specifically, wav2vec2-base is selected, which
is pretrained on 53k hours of unlabeled audio data. With its
ability of processing audio signals, a pretrained Wav2Vec2
model is used as a feature extractor for processing input
audio segments. After a series of experiments, the following
data preprocessing method and model structure are adopted.

4.3.1. DATA PREPROCESSING

Due to the limited amount of data entries in the GTZAN
dataset (only around 1000 raw audios), we decided to do
data augmentation and increase number of inputs by split-
ting each audio file into shorter segments. Specifically, given
that each audio is 30-seconds long, every input is split into
18 segments with each segment having 50% overlap with
the previous and the latter one.

Torchaudio is applied to load raw audio and convert the
audio from continuous to digital form (an array of float).
Due to the sample rate (number of samples per second
taken when converting audio to discrete signals) required
by Wev2Vec2’s feature extractor, the audio array is down-
sampled from 22050 to 16000. Last but not least, the down-
sampled audio arrays are normalized to standard normal
distribution in order to help the neural network learn features
on a similar scale.

4.3.2. MODEL STRUCTURE

The model architecture is illustrated on the left side of figure
4. First, the raw audio segments are converted to digitized
format and down-sampled. Then, the audio array data are
passed into the convolution layers and transformer encoders
of the pretrained Wav2Vec2 model. After hidden states are
extracted (with a dimension of sequence length of 49 and
hidden dimensions of 768), all hidden states at each token
position are pooled into one representation via averaging
all the outputs. Then, the pooled result is passed into the
classifier head, which consists of a linear projector layer, a
dropout layer, tanh, and a final classification layer that maps
from hidden dimension to number of labels, which is 10 in
this case. At last, the logits are used to make predictions
and to calculate cross entropy loss for backpropagation.

To further improve the model’s performance, ensemble
learning is applied here: as illustrated on the right side of
figure 4, predictions of a biased model and a main model
are combined via weighted average:

Ensemble Prediction = α ∗ Predmain + (1− α) ∗ Predbiased

Here, both the biased and the main model has the same struc-
ture as described previously. Nonetheless, the pretrained
wav2vec2 model that the biased model uses as the encoder
is loaded from pretrained wav2vec2-base, which has fewer
number of parameters than wav2vec-large that is used in
the main model. Here, it is assumed that a smaller model
is much more likely to overfit to the data be biased. By
combining the outputs of the biased and the main model,
we expect the main model to capture the unbiased portion
of the underlying features and thus is able to produce more
robust predictions during inference.

4.3.3. HYPERPARAMETERS

The following hyperpameters are considered when running
experiments.

• Part of the pretrained model that will be frozen: Given
the large scale of the model, part of the pretrained
model should be frozen, because with limited amount
of data entries, it will be very likely for the model to
overfit to the training set and have bad performance
on the dev and test set. Different settings are trialed:
freeze the entire model, freeze everything except the
last or the last two encoder layers. Freezing every-
thing except the last or the last two encoder layers
is chosen with higher accuracy.

• Method for processing last hidden layer: as illustrated
in figure 4, hidden states at different token positions are
pooled into one representation, which will be passed
into the classifier head. 4 pooling methods have been
used: last (only use the hidden states of the last token),
average (average over all hidden states), sum (sum
over all hidden states), and max (choose the maximum
hidden value at each position). Based on experiment
result, averaging pooling method is chosen.

• Learning rate: 1e-3 is chosen at last for faster learning
due to limited amount of accessible computation power
and time.

• Structure of the classifier head: Two different struc-
tures are experimented with: (1) A two-linear-layer
structure that first maps the input data (of of length 768)
to a hidden dimension of size 768, and then from this
hidden layer to a layer of size 10 (each corresponding
to the ten different labels) and (2) One linear layer fol-
lowed with tanh, dropout layer, and a final linear layer
for producing logits for each genre category. Based on
the performance, the third approach is selected.

• α value for prediction ensemble: based on experiment
results, 0.1 is chosen for α.

All hyperparameters are chosen based on the model’s per-
formance (accuracy value) on the dev set. For more details,



Figure 4. Visual illustration of internal architecture of Wav2Vec2-based model (left) and how predictions of a biased and a main model
are combined together (right). During training, predictions of the two models are weighted (0.1 for biased and 0.9 for main) and averaged
for updating the model. During inference, only predictions of the main model are used.

Table 2. Classification Accuracy for Baseline model

TRAIN DEV TEST
BASELINE 0.59714 0.28500 0.24242

please refer to the table 5 in the experiment section for
accuracy values.

5. Experiments
5.1. Baseline

Based on the method from section 4.1 along with the
train/dev/test split highlighted in 3.2, we trained a model
using a learning rate of 0.001, with 500 epochs, and a batch
size of 32. The results are listed in table 2.

5.2. Method 1: CNN

Experiments are run on different choices of hyperparameters.
We use early stopping to prevent overfitting. Table 3 records
the results to select the hyperparameters of the CNN model.
The last row shows the best performance on the dev set with
an accuracy of 70.5%. Using this model, we get 57.58%
test accuracy.

The six models for ensembling are shown in Table 4. Using
the procedure described in previous section, we get 63.6
% test accuracy. Compared with midterm report, the new
model performs slightly better. Nonetheless, the improve-
ment is not significant. This result is not surprising because
it’s likely that different models make the same mistakes even
if trained with different hyperparameters. Majority voting
prevents some minor errors that can be easily detected and
fixed. However, it cannot handle very difficult cases where

the test examples’ spectrograms are “outliers”.

5.3. Method 2: Wav2Vec2-based Model

Table 5 and 6 displays accuracy of wav2vec2-based models
and ensemble-based models with different hyperparameters.
In general, it can be concluded from the table that:

• Freeze all layers of the pretrained wav2vec2 model
except the last 2 encoder layers can result in better
performance: because Wav2Vec2 model is pretrained
for speech recognition instead of music audio process-
ing. Therefore, freezing the entire model can result
in producing bad hidden representations of the music
audio array. On the other hand, having too many layers
unfrozen may cause the model to overfit to the data,
which is reflected in row 8 of table 5.

• With more parameters, Wav2Vec2-Large based model
is able to achieve better performance compared to
Wav2Vec2-base model. Therefore, it is assumed
that Wav2Vec2-base model is weaker than Wav2Vec2-
Large based model. Correspondingly, the former is
used as the biased model and the latter is used as the
main model for ensemble-based learning method.

• Ensemble-based learning can result in better perfor-
mance, which can be seen from the result presented
in table 6. Ensemble-based method does help us to
leverage features learned from multiple models.

• Choosing not to freeze the biased model leads to
slightly better performance. One possible explanation
is that if the biased model is weaker or more biased,
then the biased model is more effective in capturing un-
derlying biases, while the main model can focus on cap-



Table 3. Classification Accuracy of CNN model on dev set

BATCH LR KERNEL PAD STRIDE DROPOUT HN LAYERS TRAIN ACC(%) DEV ACC(%)
64 0.001 3X3 1 1 0.4 0.1 128 2 94.13447783 57.5
32 0.001 3X3 1 1 0.4 0.1 128 2 95.42203147 54

128 0.001 3X3 1 1 0.4 0.1 128 2 87.12446352 56.5
64 0.002 3X3 1 1 0.4 0.1 128 2 94.70672389 47.5
64 0.0005 3X3 1 1 0.4 0.1 128 2 98.14020029 59
64 0.0001 3X3 1 1 0.4 0.1 128 2 91.84549356 54
64 0.0005 5X5 1 1 0.4 0.1 128 2 98.85550787 60
64 0.0005 10X10 1 1 0.4 0.1 128 2 91.70243205 58
64 0.0005 5X5 2 1 0.4 0.1 128 2 97.28183119 57.5
64 0.0005 5X5 1 2 0.4 0.1 128 2 90.84406295 65
64 0.0005 5X5 1 2 0.5 0.2 128 2 80.40057225 58.5
64 0.0005 5X5 1 2 0.3 0.1 128 2 91.13018598 59.5
64 0.0005 5X5 1 2 0.4 0.1 64 2 97.71101574 58
64 0.0005 5X5 1 2 0.4 0.1 128 3 84.97854077 65.5
64 0.0005 5X5 3 2 0.4 0.1 128 4 83.83404864 70.5

TEST ACCURACY 57.5

Table 4. Classification Accuracy of CNN models on dev set (ensembling)

BATCH LR KERNEL PAD STRIDE DROPOUT HN LAYERS TRAIN ACC(%) DEV ACC(%)
64 0.0005 5X5 3 2 0.4 0.1 128 4 83.83404864 70.5
64 0.0005 5X5 1 2 0.4 0.1 128 3 84.97854077 65.5
64 0.0005 5X5 1 2 0.1 0.1 128 3 72.24606581 60.5
64 0.0005 5X5 1 2 0.1 0.1 128 2 76.5379113 59
64 0.0005 5X5 1 2 0.25 0.1 128 2 81.85550787 64.5
64 0.0005 10X10 1 2 0.25 0.2 32 2 69.67095851 57

TEST ACCURACY 63.6

turing more robust features. (However, due to time and
resource limitation, a freezed version of Wav2Vec2-
based model is used as a biased model for the SOTA
model in our project).

• Using a model that is already finetuned on our dataset
instead of finetuning the Wav2Vec2-large model from
the beginning will give better performance, which is
expected because the model is already adapted to the
new task of music classification to some extent and
thus may already have some prior knowledge.

5.4. Comments

Based on the results shown previously, Wav2Vec2-based
model stands out as the best method with 74.8% test accu-
racy. Both the baseline and CNN-based methods struggle
to distinguish certain atypical examples mainly because the
their prediction only depends on spectrograms. If the spec-
trograms are not representative of their respective genre,
these two methods fail to extract useful information. In
contrast, Wav2Vec2 has already been trained on a large
amount of audio data, which can make the model to be
more effective at handling basic features of audio at the first
place. In addition, Wav2Vec2 model also take advantage
of CNN. Specifically, Wav2Vec2 model combines CNN for

first capturing low-level audio features such as pitch and
timbre and transformer architecture for capturing high-level
features, which allows Wav2Vec2 to have greater capacity
at capturing nuances of raw audio of different music genres,
especially when the dataset has small number of examples
with high degree of music diversity.

6. Discussion
6.1. Baseline

The model achieved a 21.5% dev accuracy. Upon further
inspection, the specific distribution of accuracy for each
category in the dev set is as follows:

The baseline model achieved an 80% accuracy when catego-
rizing Metal music in the dev set. Metal music is known for
its ”distorted guitars” and ”emphatic beats and loudness”.
Visually inspecting the spectrograms of Metal Music reveals
a dense graph of bright pixels that usually extends the entire
graph. See Figure 5 for a side-by-side comparison between
”Metal” and ”Rock” spectrograms:

We note potential problems for why the baseline model is
not able to achieve high accuracies in other categories such
as Classical or Rock:



Table 5. Classification Accuracies for Wav2Vec2-based Model on Dev and Test Set

MODEL FROZEN LAYERS LR DEV ACC(%) TEST ACC(%)

BASELINE - - 28.5 24.2

WAV2VEC2-BASE
ENTIRE WAV2VEC2 1E-3 53.2 53.8

ALL W/O LAST ENCODER LAYER 1E-3 61.5 60.8
ALL W/O LAST 3 ENCODER LAYERS 1E-3 42.4 43.3
ALL W/O LAST 2 ENCODER LAYERS 1E-3 63.8 62.5

WAV2VEC2-LARGE ALL W/O LAST ENCODER LAYERS 1E-3 68.8 68.2
ALL W/O LAST 2 ENCODER LAYERS 1E-3 70.8 68.9
ALL W/O LAST 2 ENCODER LAYERS 1E-4 71.9 72.5

PERFORMANCE (ACCURACY) OF MODELS WITH DIFFERENT HYPERPARAMETERS ON DEV AND TEST SET. ”FROZEN LAYERS”
REFERS TO THE LAYERS THAT WILL BE FREEZED INSIDE THE PRETRAINED WAV2VEC2 MODEL. REGARDING DETAILS OF POOLING
METHOD FOR PROCESSING LAST HIDDEN STATES AND MODEL STRUCTURE, PLEASE REFER TO THE METHOD SECTION 4.3 FOR
MORE DETAILS.

Table 6. Classification Accuracies for Wav2Vec2-ensemble-based Model on Dev and Test Set

BIASED MODEL FROZEN LAYERS(MAIN) α DEV ACC(%) TEST ACC(%)

WAV2VEC2-BASE ALL W/O LAST 2 ENCODER LAYERS 0.1 70.6 70.3
WAV2VEC2-BASE(NO GRAD) ALL W/O LAST 2 ENCODER LAYERS 0.1 69.7 69.3
WAV2VEC2-BASE(NO GRAD) (FINETUNED)ALL W/O LAST 2 ENCODER LAYERS 0.1 73.8 74.8

PERFORMANCE (ACCURACY) OF ENSEMBLED-BASED MODELS WITH DIFFERENT HYPERPARAMETERS ON DEV AND TEST SET. A
LEARNING RATE OF 1E-3 IS USED FOR ALL EXPERIMENTS PRESENTED IN THIS TABLE. ”FINETUNE” IN THE FROZEN LAYERS
COLUMN INDICATES THAT THE MAIN MODEL IS INITIALLY LOADED FROM FINETUNE CHECKPOINT OF A WAV2VEC2-LARGE BASED
MODEL WITH BEST PERFORMANCE PRESENTED IN TABLE 5.

Table 7. Accuracies Across Genres of Baseline, CNN-based, and
Wav2Vec2-based model

GENRE BASELINE(%) CNN(%) WAV2VEC2(%)

POP 30.0 75.0 61.2
METAL 80.0 85.7 89.9
DISCO 30 50.0 65.8
BLUES 15 41.7 74.7

REGGAE 30 85.7 74.9
CLASSICAL 10.0 69.2 96.7

ROCK 15.0 30.0 58.6
HIPHOP 20 61.5 86.0

COUNTRY 20 57.1 56.0
JAZZ 35 40.0 84.5

• Most frequency information is stored across the y-axis.
However, the baseline model crudely takes the average
of the values across the entire y-axis for a given column,
thereby losing large portions of valuable frequency
information that the spectrogram provides.

• Rhythm and frequency progressions of music may be
interpreted incorrectly, simply because the model is
only able to learn pattern progressions across entire
columns. Since columns are of fixed size (that are
pretty large), this means that genres like classical music

- where chord progressions and rhythm changes very
fast - would not be picked up by the baseline model

Given these problems, there are a few solutions. Firstly,
one root problem is that the current approach splits these
input tensors into fixed splits, which can contribute to a
lack of model plasticity given the wide range of musical
styles. Moving forwards, the data should be processed in a
”non-discrete/non-disjunct” manner.

Furthermore, analyzing the potential causes for inaccuracies
in the baseline model, we see that we need to improve the
model’s ability to take into account variations of frequency
within a given column. Thus, it may be better to split the
spectrogram horizontally such that the entire image is split
into grids. A CNN approach can be used to expand on this
idea.

Since the current baseline model also lacks the ability to
track the relative relations amongst progressions/patterns
both within a column and across multiple columns, the
usage of attention is also another reasonable improvement.

See CNN and Wav2Vec2-based methods for further expan-
sion on these two improvements.



Figure 5. Spectrogram of Metal (Top) vs Rock (Bottom)

6.2. Method 1: CNN

From Table 7, we discover that the model performs well on
metal and raggae, and badly on rock and jazz. We construct
the confusion matrix to help understand the underlying rea-
sons (see Table 8). For the rock pieces misclassified as blues,
their rhythmic patterns are not as strong as other rock pieces.
As a result, their spectrograms are asymmetric and more
”soft”, displaying some features common in other genres
such as blues.

To address the limitations of the CNN model, we construct
an ensembling model and analyze its performance using a
confusion matrix (Table 9). The ensembling model shows
improved accuracy in blues, country, disco, metal, and rock
genres, but still doesn’t perform as well as we expected.
Upon a manual error analysis, we observe that almost all
the same test examples are misclassified by both the CNN
and ensembling models. Closer analysis reveals that these
misclassified examples have spectrograms that are not rep-
resentative of their respective genres, indicating a potential
limitation of CNN in capturing certain types of audio fea-
tures.

Therefore, we suggest the possibility of ensembling CNN
with other models such as MLP that can capture different

types of audio features. This could potentially enhance
the accuracy and robustness of the ensembling model in
predicting genre for audio samples with diverse features.

6.3. Method 2: Wav2Vec2-based Model

As can be seen from table 7, the best Wav2Vec2-based
model with dev accuracy of 73.8% and test accuracy of
74.8% has best performance on Classical and worst per-
formance on country. Based on manual observation of the
spectrograms and listening of raw audios, classical music
has a relatively consistent structure with a clear hierarchy of
rhythm and melody. Compared to other genres like Hiphop
(which is the genre on which the model had the best perfor-
mance in the midterm report), classical music does not have
elements of electronic manipulation, which makes the audio
more representative of the original performance.

In contrast, country music may be less identifiable due to
its high degree of variability in instrumentation and arrange-
ment. Different country music pieces may feature different
instrument combinations and performance style. Thus, it
can be more difficult for the model to extract distinguishable
features. The difficulty is also reflected in the performance
result: although Wav2Vec2-large has a much higher num-
ber of parameters than Wav2Vec2-base, the accuracy for
country music has only been increased by 0.1% since the
midterm report, whereas accuracy of classical music has
been increased by 19.1%.

7. Conclusion
Overall, the project has the following findings:

• The single CNN model achieves a test accuracy of
57.5%, while the ensembling model improves the ac-
curacy to 63.6%. However, the ensembling approach
still fails to accurately predict the ”confusing” exam-
ples. This indicates a limitation of the CNN models, as
they struggle to extract useful information from spec-
trograms that deviate from typical examples of their
genre. To further enhance the performance of the exist-
ing model, we suggest two possible approaches. First,
we could implement a more sophisticated CNN archi-
tecture that can better capture diverse audio features
and handle more complex audio data. Alternatively,
we could ensemble CNN with other machine learning
models that can complement its strengths and over-
come its limitations. This could potentially improve
the accuracy and robustness of the model in predicting
genre, even for ”confusing” examples with atypical
spectrograms.

• Wav2Vec2 based model achieves 73.8% accuracy on
the dev set and 74.8% accuracy on the test set, with



Table 8. Confusion Matrix of CNN

PREDICTED

BLUES CLASSICAL COUNTRY DISCO HIPHOP JAZZ METAL POP REGGAE ROCK
BLUES 5 0 1 0 0 2 0 0 1 1

CLASSICAL 0 9 0 0 0 1 0 0 0 0
COUNTRY 2 0 4 2 1 1 0 0 0 0

DISCO 0 0 0 6 3 0 1 0 0 0
HIPHOP 0 0 0 1 8 1 0 0 0 0

JAZZ 0 4 0 0 0 4 0 0 0 1
METAL 1 0 0 0 1 0 6 0 0 2

POP 1 0 0 1 0 0 0 6 0 2
REGGAE 0 0 0 1 0 1 0 1 6 1

ROCK 3 0 2 1 0 0 0 1 0 3

Table 9. Confusion Matrix of CNN (ensembling)

PREDICTED

BLUES CLASSICAL COUNTRY DISCO HIPHOP JAZZ METAL POP REGGAE ROCK
BLUES 6 1 1 0 1 1 0 0 0 0

CLASSICAL 0 9 0 0 0 1 0 0 0 0
COUNTRY 1 0 6 0 1 0 0 0 0 2

DISCO 0 0 0 8 1 0 1 0 0 0
HIPHOP 0 0 0 2 7 0 0 0 1 0

JAZZ 0 3 1 0 0 3 0 0 1 1
METAL 0 0 0 0 0 0 9 0 0 1

POP 0 0 0 0 1 0 1 6 0 2
REGGAE 0 0 1 2 0 0 0 1 5 1

ROCK 1 0 2 2 0 0 0 1 0 4

Wav2Vec2-large finetuned on the GTZAN dataset as
the main model and Wav2Vec2-base as the biased
model. Adopting ensemble-based learning method
helps us to increase accuracy by approximately 10%
compared to midterm performance. Based on the result,
it can be concluded that a model pretrained for human
speech recognition is able to be adapted for music
audio classification tasks with assistance of ensemble-
based learning method. To further improve model’s
performance, a larger dataset with better quality should
be obtained, as Wav2Vec2 model is too large such that
having only 1000 samples is not sufficient for training.
Also, the effect of adjusting α for ensemble learning
should be further explored, as keeping a proper balance
between the biased and the main model can be critical
to the model’s performance.

Learning from this project:

• It is important to systematically organize codes into
functions and files into certain hierarchies to enhance
productivity when running experiments.

• One should closely examine the dataset, such as distri-
bution of data samples by labels, and spend more time

on experimenting with different data-preprocessing
methods like data augmentation. Having a dataset with
good quality can greatly improve the model’s perfor-
mance, especially when the dataset is small.

• Performance results should be logged properly to avoid
wasting time on loading model checkpoints and rerun
experiments.

• Tools such as parameter parsers and sh scripts should
be used for changing hyperparameters of the model in
a clearer and more logical way.

• Before model implementation, one should conduct
enough literature review and have better intuition on
examining the effectiveness of his or her own methods.

References
Baevski, A., Zhou, H., Mohamed, A., and Auli, M. wav2vec

2.0: A framework for self-supervised learning of speech
representations, 2020.

Li, Y., Zhang, Z., Ding, H., and Chang, L. Mu-
sic genre classification based on fusing audio and
lyric information. Multimedia Tools and Applica-
tions, Dec 2022. ISSN 1573-7721. doi: 10.1007/



s11042-022-14252-6. URL https://doi.org/10.
1007/s11042-022-14252-6.

Liu, C., Feng, L., Liu, G., Wang, H., and Liu, S. Bottom-
up broadcast neural network for music genre classifica-
tion, 2019. URL https://arxiv.org/abs/1901.
08928.

Pelchat, N. and Gelowitz, C. M. Neural network music
genre classification. Canadian Journal of Electrical and
Computer Engineering, 43(3):170–173, 2020. doi: 10.
1109/CJECE.2020.2970144.

Yu, Y., Luo, S., Liu, S., Qiao, H., Liu, Y., and
Feng, L. Deep attention based music genre classifica-
tion. Neurocomputing, 372:84–91, 2020. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2019.09.
054. URL https://www.sciencedirect.com/
science/article/pii/S0925231219313220.

https://doi.org/10.1007/s11042-022-14252-6
https://doi.org/10.1007/s11042-022-14252-6
https://arxiv.org/abs/1901.08928
https://arxiv.org/abs/1901.08928
https://www.sciencedirect.com/science/article/pii/S0925231219313220
https://www.sciencedirect.com/science/article/pii/S0925231219313220

