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Abstract
Suicide can come suddenly, but by noticing pat-
terns in an individual’s posts on social media, one
can be directed to the right help in time. To dis-
tinguish between a suicidal post versus a non-
suicidal one, I have implemented two primary
machine learning algorithms: a Naive Bayes clas-
sifier and an LSTM network. I evaluated both of
these models by calculating precision, recall, and
F1-score in addition to accuracy. Among the mod-
els, Naive Bayes performed slightly better than
the LSTM, but both accuracies evaluated on the
test set score 80% higher the baseline approach.

1. Introduction
Identifying suicidal thoughts and outward expressions early
on when a person is depressed can spare the painful emo-
tions that death leaves with family and friends.

The goal of this project is to better be able to predict if an
individual will commit suicide based on social media posts.
The input is a document (a post on Reddit) and the output is
the classification suicide or non-suicide.

Based on the classification, sites such as Reddit and other
online forums can use the result to direct individuals to
suicide hotlines, psychiatric professionals, or, if this person
has connected their contacts to the app, alert a parent or
emergency contact. This project helps identify posts that are
more indicative that the individual will attempt to commit
suicide. The methods demonstrated here can be applied by
content moderators to future social media posts that may
not be clear whether they indicate suicide or non-suicide.

In this project, I have implemented a baseline, Naive Bayes,
and a recurrent neural network, achieving an accuracy of
approximately 90% on both Naive Bayes and the neural net-
work. I cleaned the text input before running any machine
learning methods by pre-processing the text so that differ-
ent forms of a root word are used and that stopwords are
removed. I chose to implement a recurrent neural network
because it addresses a primary issue that Naive Bayes strug-
gles with. As a result of these experiments, I have found that
Naive Bayes and the neural network result in comparable
accuracies on test sets. Either can be used to aid in making

reliable predictions on social media posts.

2. Related Work
A group used demographic information for US counties
to predict suicide rates. They used a regression based pre-
dictive model and the XGBoost regressor. Through their
methods, they were able to decrease the amount of neces-
sary features from 17 to 5 (population, % white population,
median age, % African American population, and % female
population). Though their work in this study may be incom-
plete, as the authors acknowledge that there may be suicides
that were not reported, or suicides that were meant to cause
harm but not death. Additionally, there was no demographic
information on % tribal population, which may or may not
have been a significant factor for this study (Kumar et al.,
2022).

A similar experiment was done a year earlier, where in-
stead, researchers looked at features such as substance use,
suicidal thoughts, and academic pressures instead of demo-
graphics to evaluate suicidality in college students. They
used a random forests model to find that the most influential
factors were 12-month suicidal thoughts, trait anxiety, de-
pression symptoms, and self-esteem. However, since their
data came from questionnaires filled out by college students,
they cannot prove that all students were answering entirely
truthfully for the initial or follow-up responses. They ac-
knowledge that they should have collected data from more
sources (Macalli et al., 2021).

Another project from 2021 tried various models on classi-
fying suicidality from Twitter posts. They used k-Nearest
Neighbors, support vector machines, and a form of atten-
tion called C-attention. It was found that C-attention was
the most effective in long-range predictions whereas the
other two methods were better at short-range predictions.
In their process, they chose both hand-selected features and
latent features based on word embeddings. Some methods
performed better for hand-selected features while others
were better with latent features. They arrived at relatively
low values for F1-score and AUC, leading them to believe
that they overfit their model, ultimately agreeing that they
needed to find a way to better distinguish what features to
use and how to choose them.



My approach focuses on social media posts written by sui-
cidal and non-suicidal individuals, not on features such as
demographic information, though my goal aligns with all
the works. I decided to use deep learning like in the last
approach to be able to capture relationships between words,
but by instead implementing a version of a recurrent neural
network that can handle long-range dependencies. I made
sure to use early stopping so I would not overfit the model,
and ended up with a better F1-score than the last method. If
the last example had used early stopping or weight decay
to handle overfitting, their F1-score could have been higher
(Wang et al., 2021).

3. Dataset and Evaluation
I am using the Suicide and Depression Detection dataset
from Kaggle (Komati, 2021). It contains over 232,000
binary classification examples drawn from the “Suicide-
Watch” and “depression” sub-Reddits from the social media
platform, Reddit. Each example contains the classification
non-suicide or suicide, as well as the text of a Reddit post.
Out of the total 232,072 examples, there are 116,037 suicide
examples and 116,035 non-suicide examples. The following
is an example of a suicide post: ”What is the best way to
do it?I’m not looking to be talked out of it. What would be
the most effective, easiest way to go?”. The posts can vary
in length from one sentence long to multiple paragraphs of
text. The average word count is 131.5 words.

The dataset has been shuffled randomly and then split into
training, development, and test sets with 70% training, 10%
development, and 20% test. This corresponds to roughly
162,400 examples for training, 23,000 examples for dev,
and 46,000 examples for test. Each set contains a variety
of non-suicide and suicide examples to ensure coverage of
both classes.

The models have been evaluated based on accuracy, recall,
precision, and F1-score. I used a confusion matrix to gener-
ate the inputs for the metrics. These evaluation tools help
to determine how consistently the model makes accurate
classifications. I used precision to measure how consistently
correct positive predictions are made out of all positive pre-
dictions, recall to evaluate how well the model can detect
the suicide class, and F1-score to combine the two. Preci-
sion helps to identify any false positives, so as to prevent
taking unneeded measures to prevent suicide if a person is
not suicidal. Recall helps to evaluate how well the positive,
suicide class is predicted, so I would want high recall to
identify as many suicidal posts as possible so that proper
action can be taken.

4. Methods
4.1. Majority-Rule Baseline

I first used a majority-rule baseline in which I calculated
the most common occurrence in {non-suicide, suicide} in
the training set, and assigned the label to every example
in the test set. In other words, I found the maximum of∑n

i=1 1(y
(i) = suicide) and

∑n
i=1 1(y(i) = non-suicide),

and applied the most common label to every example in
the test set. I divided the training set and test set into a
random 80%-20% split, since there was no need to test
hyperparameters with a development set.

4.2. Naive Bayes

4.2.1. EQUATIONS

I implemented Naive Bayes to find the most likely class for
an example according to the equation

P (Y | X) =
P (Y ) ∗ P (X | Y )

P (X)

where Y represents either the classification suicide or
non-suicide and X represents the input, which is a Reddit
post. The maximum value was found between

P (suicide | X) = P (suicide) ∗ P (X | suicide)

and

P (non-suicide | X) = P (non-suicide)∗P (X | non-suicide)

Since P (X) is the same in both cases, it can be ignored.
P (X | Y ) was broken down using the Naive Bayes assump-
tion of conditional independence,

P (X | Y ) =

n∏
i=1

P (Xi | Y )

where Xi represents one word in a document. The full
equation was transformed into a sum of logs

P (Y | X) = logP (Y ) +

n∑
i=1

logP (Xi | Y )

to ensure no multiplication of small values.

To avoid the possibility than an unseen word from the train-
ing set might come up in the test set, Laplace smoothing was
added with λ = .075. This value was found to give the high-
est accuracy after training the model and then evaluating
multiple models on the development set.

4.2.2. TEXT PRE-PROCESSING

The features of one input X are represented by the words in
the input document. These features were cleaned to ensure



uniformity among the data so that similarly formed words
would be treated as the same words. I pre-processed the text
by converting all Reddit posts to lowercase and removing
punctuation, including commas, periods, and contractions
like in the words “don’t” and “shouldn’t”. I then filtered out
stopwords that are common to both classifications and there-
fore unnecessary in distinguishing a class, such as articles
and pronouns. The Reddit posts were then lemmatized to
get the root word, so that “books” and “book” are treated as
the same word.

4.3. Recurrent Neural Network

4.3.1. WORD EMBEDDINGS

I used a set of approximately 1 million pretrained word
vectors each of dimension 300, retrieved from FastText
(Mikolov et al., 2018). Each line in the file contained the
word followed by 300 space-separated floating point num-
bers representing the word vector.

For each batch, before running the forward pass of the neural
network, I mapped every word in the input Reddit post to
the index of the word in the file. Since the input would be
unequal in size based on the length of the posts, I padded
the shorter sentences with zeros at the end.

4.3.2. ARCHITECTURE

I used an LSTM rather than a traditional RNN because of
its ability to handle long-range dependencies. For this task,
I used Pytorch’s built-in LSTM model. The LSTM manages
the hidden state and the cell state, which is responsible for
long-term memory. The Pytorch model uses three gates,
which control what comes in and out of the network. The
forget gate determines how much information will be re-
tained from the previous step, the input gate determines if
the cell state will be updated, and the output gate determines
the value of the new hidden state (Dolphin, 2020). LSTMs
require a hidden state and a cell state when initialized; both
of these were initialized to zero tensors at the beginning of
every epoch. After the initialization, each batch would go
through the forward pass of the network as follows:

• Embed the input with the pretrained word embeddings
• Apply an LSTM layer to map from the input dimension

of 300 to hidden_dim
• Apply dropout to the output of the LSTM
• Use a hidden layer to map from hidden_dim to
NUM_CLASSES

4.3.3. MODEL SETTINGS

During training, I used Adam as an optimizer, and iterated
over the data in batches. I decided to tune batch size, dropout
probability, learning rate, and hidden_dim. These were
chosen because they were seen to sufficiently affect the

model upon multiple runs. The number of epochs to run
for did not matter much, since all accuracies could be deter-
mined within 20 epochs.

In order to prevent overfitting, I utilized early stopping by
selecting the best model evaluated on dev to evaluate the
test set on.

4.4. Model Comparison

Using a recurrent neural network has its advantages over
Naive Bayes and majority-rule baselines. Recurrent neural
networks—or in this case, LSTM networks—are meant to
handle word order so that they recognize the relationship
between words, not simply count the frequency of one word
or another or assign a class based on a majority-rule. In this
way, it is better able to interpret the meaning of a sentence
and how it relates to previous and following sentences in a
post, capturing the intent of the message as a whole.

5. Experiments
Each time I ran the majority-rule baseline, I received an ac-
curacy around 49-50%. When running this baseline multiple
times, the majority class would switch from non-suicide to
suicide or vice-versa based on how the data was split after a
random shuffle. The output of one run is shown in the graph
below. Here, the model found that suicide was the most
common among training examples, so it predicted suicide
for every test example. This led to a 49.793% accuracy on
the test set.

Figure 1. Majority-Rule Baseline Confusion Matrix Evaluated on
Test Set

When running Naive Bayes, I got a training accuracy of
90.845%. I ran the model multiple times on the development
set to find an appropriate λ and got the following results.



Table 1. Lambda hyperparameter evaluated for Naive Bayes.

λ DEV SET ACCURACY

10 79.664%
1 89.871%
0.5 90.491%
0.1 90.914%
0.075 90.918%
0.05 90.901%
0.01 90.836%
0.001 90.616%

From this, I found that the choice λ should be 0.075. I ran
Naive Bayes on the test set and got an accuracy of 90.549%.

Naive Bayes far outperformed the majority-rule baseline.
The majority-rule baseline only assigned a class to the test
examples based on training data, ignoring the structure and
content of the test examples. Naive Bayes, on the other
hand, determined the best classification based on frequency
counts of words in each test example and assigned a label
based on probabilistic outcome.

When running experiments on my LSTM network, I found
that training would take significantly more time than Naive
Bayes. After trying a few epochs of the full training dataset
and comparing this against running with around 16,000
examples, I did not see a noticeable difference in accuracy.
Because of this, I decided to run the LSTM with 16,384
training examples, 2,304 examples in the dev set, and 3,840
examples in the test set.

I was able to find the best hyperparameters by running vari-
ous values on the dev set. When evaluating a hyperparame-
ter, I kept all other hyperparameters constant.

Table 2. Batch size hyperparameter evaluated for LSTM.

BATCH SIZE DEV SET ACCURACY

32 81.901%
64 89.714%
128 88.845%

Table 3. Dropout hyperparameter evaluated for LSTM.

P DEV SET ACCURACY

0.0 86.372%
0.1 89.236%
0.2 83.420%
0.3 85.200%

Table 4. Learning rate hyperparameter evaluated for LSTM.

η DEV SET ACCURACY

1E-3 88.932%
1E-2 89.714%
1E-1 89.236%
1 66.623%

Table 5. Hidden nodes hyperparameter evaluated for LSTM.

NODES DEV SET ACCURACY

100 77.517%
200 89.714%
300 70.095%

After experimenting with hyperparameters, I found that the
best options are batch size = 64, dropout = 0.1, η = 1e-2,
and hidden_dim = 200. I used these results and got a
train accuracy of 89.673%, a dev set accuracy of 89.106%,
and a test set accuracy of 89.323%.

The confusion matrix for the LSTM is:

Figure 2. LSTM Confusion Matrix Evaluated on Test Set

The model is performing at nearly twice the accuracy of the
majority-rule baseline, similar to Naive Bayes, since it is
able to assess posts based on what words the post contains
rather than a majority-rule of the training data.

Naive Bayes managed to outperform the LSTM model in
this case, though the difference in accuracy is small. This
may be caused by slightly lower accuracy when running
on a subset of data, which could have been resolved with
more data. A smaller dataset also means it is more sen-
sitive to hyperparameters such as dropout or the amount



of hidden nodes. The accuracy could be attributed to the
relatively simple architecture of the neural network. I could
have achieved higher accuracy by trying techniques such
as batch normalization or adjusting the parameters of the
Adam optimizer.

I was surprised that a neural network could not produce
significantly better results than a linear classifier. It is likely
that since the input comes from social media, the authors
of the posts may express themselves more dramatically in
order to gain attention or empathy. For instance, a post such
as “My mom just grounded me! I can’t go to prom! I want
to die!” is overly dramatic. It’s quite often that someone
would exaggerate their emotions when posting behind the
safety of a screen, so the phrase “I want to die” can be
taken in multiple ways, whether someone is being sarcastic,
over-dramatic, or legitimately depressed and suicidal. While
recurrent neural networks can account well for word order,
they may not be as adept at detecting tone, something that
is very prevalent and can vary widely in social media.

6. Discussion
Accuracy, precision, recall, and F1-score for the majority-
rule baseline are calculated according to the following equa-
tions:

Accuracy =
TP + TN

TP + FP + FN + TN
= .49793 (1)

Precision =
TP

TP + FP
= .49793 (2)

Recall =
TP

TP + FN
= 1.0 (3)

F1-score = 2(
PR

P+R
) = .664828 (4)

The confusion matrix outputted for Naive Bayes is:

actual\predicted suicide non-suicide
suicide 22300 910

non-suicide 3482 19780

The evaluation metrics for Naive Bayes are as follows:

Accuracy = .9055 (5)

Precision = .8649 (6)

Recall = .9608 (7)

F1-score = .91 (8)

Naive Bayes performed well as a binary classifier, achieving
around 90% accuracy and a high F1-score. The model was
able to pick out important words that contributed to the
suicide class and apply it to test data. A high frequency
of words associated with the suicide label made the text

more likely to classify as suicidal. Since language follows a
similar pattern, where words expressing suicidal thoughts
come out in suicidal posts, it makes Naive Bayes a good
classifier for this problem.

However, there were a number of examples that were not
classified correctly. Looking at the data for what was incor-
rectly classified, I see that examples that were non-suicide
but classified as suicide include relationship subjects such as
“wife”, “girlfriend”, and “boyfriend”. Since common causes
of suicide are close, interpersonal relationships, the model
may have attributed relationship-related words to suicide.

It is also possible that suicide examples that are misclassified
as non-suicide may include a long background story, and the
words in this story may outweigh suicidal words later on in
the text. This is an example of when Naive Bayes’ ignoring
of word order causes misclassifications. Another way in
which Naive Bayes’ use of frequency counts could have
caused issues is from synonyms. Words such as “mad” and
“angry”, which convey the same emotion, nevertheless could
be weighted differently based on how much they occur in
the examples.

However, word vectors solve this issue, since it takes advan-
tage of the idea that similar words in similar contexts should
have similar word vector representations. Using an LSTM
helped achieve even weighting across synonyms.

When running LSTM on the hyperparameters of batch size
= 64, dropout = 0.1, η = 1e-2, and hidden_dim = 200,
the resulting confusion matrix and evaluation metrics were:

actual\predicted suicide non-suicide
suicide 1771 171

non-suicide 239 1659

Accuracy = .8932 (9)

Precision = .8811 (10)

Recall = .9119 (11)

F1-score = .8963 (12)

Just as with Naive Bayes, accuracy and F1-score are close
to 1.0. From this, I know that the network was successfully
learning features and learning how to classify what a suicide
post looked like versus a non-suicide post. Because of its
deep learning capabilities, I would expect the network to
achieve higher accuracy, but given some implementation
choices such as the settings of the model and the optimizer
and the architecture of the network, higher accuracy likely
would not have been achievable without substantial changes.

With text input, I had to make a decision about how to
handle typos. I handled this case by ignoring typo words
completely. Looking at posts that were misclassified, I see



that most of them contain typos. This could be a reason for
low accuracy, since important words or phrases could have
been left out in the process of mapping words to the indices
in the vocabulary.

The post “tonight nightim exited” contained a typo and was
classified as non-suicide even though it was a suicide post.
This does not clearly imply suicide, so it makes sense that
the model misinterpreted the meaning of the sentence. A
reason it could have been suicidal when posted is because
the author might have been excited or relieved to end their
suffering that night. This wording would not typically be
found in a suicide post, which would mainly contain words
of anger, hurt, or frustration. Ensuingly, the classification
of non-suicide makes sense. It is also possible that this
post did not provide enough context about the author’s situ-
ation or backstory, so it was hard for the model to discern a
classification.

7. Conclusion
In this project, I implemented a majority-rule baseline, then
used Naive Bayes and an LSTM to improve upon the task
of text classification. I found that Naive Bayes outperforms
the baseline with an accuracy that is almost twice as high,
and the LSTM performs similarly.

The most challenging part of this project was writing the
code for the LSTM, when I had to figure out the training
loop of the neural network. I had to determine how to
process the million word vectors and transform the input
text to indices in the vocabulary, both in ways that would not
use up too much RAM. Additionally, since a neural network
is much more complex than linear models, it took much
longer to train. This meant that testing hyperparameters
took up most of the time during my experiments for the
LSTM.

It was surprising to me that the LSTM performed roughly
the same as Naive Bayes. I can attribute this to the relatively
straightforward architecture of the network. Now that I
have a working implementation of an LSTM, though, to
improve upon this classification task in the future, I would
want to try out other parameters of Adam and add more
complexity to the network so that it has more capability to
learn text features. Ultimately, I’ll have to take into account
the many nuances of text input. Elements such as tone and
converting typos into valid input are imperative to building
a truly effective text classifier.

8. Code & Data Submission
The code and dataset for this project are available at: Google
Drive (requires USC login).
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