Applying Binary Classification Techniques on Prediction of Heart Failure

Lily Qiang

This project focuses on using various binary classification
techniques to predict whether a giver person is diagnosed of
heart failure given a set of input features (e.g age, sex,chest
pain, etc). 4 different types of machine learning models
are developed for the binary prediction. Each model has its
hyper-parameters being tuned on the training data set using
k-fold cross validation technique, and then get trained on the
entire training data set again to produce the best parameter.
Finally, each model is evaluated on the test data set based on
the performance, and the primary metric used for evaluation
is classification accuracy. In turns out that the K-Nearest
Neighbor has worst performance based on classification
accuracy both on the development data set and test data set.
On the other hand, logistic regression has best classification
performance on both of the two types of data set.

Link to code: https://github.com/Lily-583/cs-467.

Link to code: dataset.

1. Introduction

Cardiovascular disease is one of the leading health killer
globally. In 2019, it is found that 17.9 million people died
from CVD, 85% among which is due to heart failure. How-
ever, the diagnosis of cardiovascular disease remains to be
hard, as the triggering factors of this disease are complicated
and can be coming from various aspects such as unhealthy
food, tobacco, or overweight, etc. As early detection of
CVD is critical in saving people’s lives, this study is aim-
ing at using various machine learning techniques to build
different binary classification models in order to predict
whether one is diagnosed of CVD. A value of 0 in the out-
put will indicate one does not have CVD, whereas a value
of 1 will indicate one is associated with CVD. Then a con-
fusion matrix will be generated in order to compare and
contrast the actual and predicted labels. I will also evaluate
the prediction performance of each model by computing
some evaluation metrics, such as accuracy. I will also com-
pare those accuracy metrics generated by my models to see
which one is the best at prediction. To summarize briefly, the
logistic regression yields the best classification performance,
whereas k-nearest neighbors yields the worst performance.

2. Related Work

Dissanayake et al (2021) conducted research on data col-
lected from UCI repository’s heart disease datasets. After
applying feature selection over 303 instances with 75 fea-
tures, 14 features were selected and used for the experiment
purpose. Different supervised learning methods, including
random forest, SVM, K-NN, logistic regression and naive
Bayes were built and their corresponding performances are
evaluated. However, there are several challenges faced by
this study. First of all, the size of the dataset is limited,
since only 303 instances are used. Therefore, a potential
improvement is to use a larger dataset so models with better
accuracy can be developed. Also, even though the study
used cross-validation technique, it chose a relatively small
number of subsets, which may be another reason leading
to the loss of prediction accuracy. Also, the output varies
greatly depending on the specific feature selection technique
used, so another potential improvement for future research
is to use hybrid techniques to extract most useful features.

In terms of comparison and contrast between my work and
the paper above, the similarities lie in the fact that we both
constructed k-nearest neighbors as 1 of the machine learning
models, and we both used euclidean distance for measuring
distance from neighbors. Also, for naive bayes algorithm,
we both used Gaussian distribution for input features. The
contrast between my work and the research above is that I
primarily focused on tuning hyper-parameters, while the re-
search above spent more time on data pre-processing. This
is because we used slightly different dataset. All the ex-
amples in my dataset do not have missing features, and
that saves me from spending a lot of time on data removal.
However, a further improvement I could make on my ex-
periment based on the previous research is to incorporate
some feature selection techniques to further improve the
classification accuracy.

3. Dataset and Evaluation
3.0.1. DATASET

The dataset used is the “Heart Failure Prediction Dataset”
from Kaggle (2021). The input contains 11 independent
attributes: (1) Age of patient (numerical); (2) Sex of patient
(1 for men and O for women); (3) Level of chest pain (will

https://github.com/Lily-583/cs-467
https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

use integers from 0-3, where 3 indicates the highest level of
pain); (4) Rest blood pressure (numerical); (5) Cholesterol
level (numerical); (6) Fasting blood sugar level (will use 0
or 1 to show if passing the 120mg/dl threshold); (7) Resting
electrocardiogram (will use integers from 0-2 to indicate
level of severity, with 2 represents the highest); (8) Max
heart beat rate (numerical); (9) Exercise-induced angina (0
for yes and 1 for no); (10) Oldpeak (numerical value to show
level of depression); (11) ST-Slope (slope of peak exercise
ST segment, will use integer from 1-3 to represent each
type). The data set also contains the labels (in binary form,
0 and 1) to indicate if that individual has CVD or not. The
outputs produced by my models will be in the form of binary
(either O or 1) to indicate if each individual is diagnosed
of heart disease or not. Then a confusion matrix will be
generated to compare the predicted result with the actual
labels.

3.0.2. EVALUATION

As of evaluation, there are 918 observations totally in my
dataset. Among those 918 observations, 508 are classified
as having heart failures, and the remaining 410 are people
with no heart failures. Since I have a limited amount of data,
I decide to use cross validation for the training and develop-
ment dataset together. To begin with, I firstly selected 20%
percent data for the test set (184 data), and for the remaining
734 data, I used cross validation to tune the model and select
the best hyperparameters. I will use k-1 folds for training
set, and 1 remaining fold for development set. As for the
evaluation metrics, I will use accuracy as the main metric
for evaluation purposes, since I have a relatively balanced
dataset and all classes are of equal importance.

4. Methods
4.0.1. BASELINE

I used logistic regression with L2 regularization as the base-
line. The inputs are (1) Age of patient (numerical); (2) Sex
of patient (1 for men and O for women); (3) Level of chest
pain (will use integers from 0-3, where 3 indicates the high-
est level of pain); (4) Rest blood pressure (numerical); (5)
Cholesterol level (numerical); (6) Fasting blood sugar level
(will use 0 or 1 to show if passing the 120mg/dl threshold);
(7) Resting electrocardiogram (will use integers from 0-2
to indicate level of severity, with 2 represents the highest);
(8) Max heart beat rate (numerical); (9) Exercise-induced
angina (0 for yes and 1 for no); (10) Oldpeak (numerical);
(11) ST-Slope (slope of peak exercise ST segment, will use
integer from 1-3 to represent each type). After running the
logistic regression algorithm on the testing data set, a binary
output (in 1 or 0) will be generated to indicate the predicted
outcome, that is, whether the person is predicted to have
heart disease or not. This predicted outcome will then be

compared with the actual outcome for evaluating the accu-
racy of the model. I used cross-validation on the training
and development data set all together. Since I have a limited
number of data, I used a relatively large number of itera-
tions (iteration=1000) to run the logistic regression. The
hyper-parameters here are the regularization(penalty) and
fit intercept. The regularization term, or penalty, is either
L1 or L2, which are used to improve the performance and
accuracy of logistic regression model. The fit_intercept is a
boolean variable that specifies if a constant should be added
to the decision function. I used 12 fold cross-validation
on the training set to select the best combination of hyper-
parameters using grid search. I used classification accuracy
as the criteria for selecting the best hyper-parameters. After
tuning the best sets of hyper-parameters, I trained the model
on the entire training set, and finally evaluated the model’s
performance on test data set. I used classification accuracy
as my main evaluation metrics.

4.0.2. K-NEAREST NEIGHBORS

I used the k-nearest neighbor as 1 of my machine learning
model for doing the heart failure classification. The input
features of the data set are exactly the same as those used
in the baseline method above. Since I have limited data, I
again used cross validation set to tune the hyper-parameter
and used the test data set to evaluate the final performance
of the model. I used 12 as the number of folds. The hyper-
parameter I experimented on is the number of neighbors. I
tested n from 1 to 31 as the number of neighbors. For each
number of n, I run the cross validation algorithm, again with
11 folds as training set and 1 fold as development set. For
the k nearest neighbor algorithm, for each test data point, the
k nearest neighbor are selected using euclidean distance, and
finally the test data point is classified as the same class of its
majority neighbors. Again I used accuracy as the evaluation
metrics for selecting the best hyper-parameter. Finally the
model tuned from train+development set is applied on the
test set, and the classification accuracy on the test data set is
also calculated for performance evaluation.

The algorithm for running k-nearest neighbors is as follows:

1. Start with the data point that needs to be classified.
Calculate the euclidean distance between the data point
and all the other n existing data points. The euclidean
distance between 2 points p,q is defined as below.

2. Sort the n calculated distance from greatest to smallest.

3. Take the first k distance from the sorted list.

4. Find the majority label of the example corresponding
to the k distance, and assign the current data point to
that label.

4.0.3. DECISION TREE

I used decision tree as another machine learning model for
doing the heart failure classification. The input features of
the data set are same as those used in all the other machine
learning algorithms. I again used k-fold cross validation to
tune the hyper-parameters first, and then used the test set to
measure the ultimate performance of the model. The number
of folds I used is always 12, which is consistent across
all the different machine learning models I used. I chose
2 hyper-parameters to tune, which are “min sample leaf”
and “criterion”. The options for “min sample leaf” is [1,5],
and the options for “criterion” are “gini” and “entropy”.
I used “accuracy” as my scoring criteria for selecting the
best hyper-parameters. After determined the best set of
hyper-parameters using “GridSearchCV”, which is a built-in
function that tries all the combinations of hyper-parameters
on the cross validation set, I trained the model on the entire
training data, and evaluated its performance on the test data.

* “Min sample leaf” is defined as “the minimum number
of samples required to be at a leaf node”.

* The “gini” criteria is used to measure the probability
of a specific variable being wrongly classified when
it is randomly chosen. p is the empirical probability
of class ¢ within the current node. While building the
decision tree, the feature with the lowest gini index will
be preferred at the current node. Below is the formula
for calculating gini index.

c
gini=1— ch(l - Pe)

c=1

» The “entropy” criteria measures the impurity in a group
of examples. It is another way to determine which fea-
ture should be based on to split the data at the current
node. Below is the formula for calculating entropy.
After knowing how to calculate entropy, we could in
turn calculate the information gain.

c

entropy = — ch<l092 (Pc))
c=1

* The “information gain (IG)” is a metric associated with
entropy. The feature with the highest information gain

is preferred.

IG = entropy(parent) — avg_entropy(children)

The algorithm for constructing the decision tree is as fol-
lows:

1. Start with the root node. All training data is under the
root.

2. For each feature, split the training data by the value of
that feature. Then compute the gini index/information
gain of that feature.

3. Select the feature that has the highest information
gain/lowest gini index at that node.

4. Partition the data into child nodes based on that feature.

5. For each child node, if it is “pure”(all data under it are
from the same class), label it as a leaf node. Otherwise,
repeat the above procedure recursively.

4.0.4. NAIVE BAYES

I used Naive Bayes as the last classifier for heart disease
classification. Again, the input features of the data set are
same as those used in all the other machine learning al-
gorithms. I again used 12-fold cross validation to tune
the hyper-parameters. For Naive Bayes, there is only 1
hyper-parameter I tune, which is “var_smoothing”. The

“var_smoothing” is a user-defined value that is added to

a given feature’s distribution’s variance. This widens the
Gaussian distribution curve, and accounts for more samples
that are away from the sample mean. I again used “accuracy”
as my selection criteria when choosing the best value of the
hyper-parameter. The values I chose from are 9 discrete
values ranging from le-10 to 0.01. After figuring out the
best value of the hyper-parameter, I run the algorithm on the
test set, and evaluated the performance of the model based
on classification accuracy. Even though the ski-learn has
built-in function for constructing the Naive Bayes classifier,
below is a list of steps of the algorithm.

1. prior: Since the training examples are binary classified,
there are only 2 types of prior: p(y=1) and p(y=0),
where y=1 denotes training examples labeled as having
heart failure, and y=0 denotes those labeled as not
having heart failures.

1y ply=1)
Pv=1= =) Ty =0)

o p(y =0)
Ply=0)= ply=1)+p(y=0)

2. conditional probability of features: As we assume the
presence of a particular feature in class in indepen-
dent of the presence of another feature, we can make
following derivations:

p(wily)
Yy

p($1|y7$1, ey Ly Ty 71.71) =

Therefore, we have

p(x1, 2, oy 2nly) = p(@1|y)p(z2]y)...p(T0ly)

And finally, we could compute

p) I1i_y p@ily)
p(T1, ey Tp)

p(y|x1,x2, "'7x7l) =

4.0.5. IMPROVEMENTS FROM MIDTERM REPORT

In midterm report, I only constructed 2 machine learning
models, namely logistic regression and K nearest neighbors.
In final report I further improved the classification accuracy
of logistic regression by re-selecting the hyper-parameter
for tuning. Previously I chose the number of folds in cross
validation as a hyper-parameter to tune, but it is not the
best one to play with, and it also makes the training process
being inconsistent from other models. Therefore I chose the
regularization strength as the hyper-parameter to tune, and
the classification accuracy is increased. In addition to that,
in this final report I built another 2 models, decision tree
and naive bayes, and both of them have more than 80% of
classification accuracy on the test dataset.

5. Experiments
5.0.1. LOGISTIC REGRESSION

The hyper-parameter is the type of regularization (11 or
12) and fit_intercept (whether a constant will be added to
the decision function). For each different combinations
of the 2 hyper-parameters, the classification accuracy is
calculated on the dev set to determine the best combinations
of hyper-parameters. Since I used 12-fold cross validation,
the actual classification accuracy is the average classification
accuracy across the 12 dev sets. From the graph, it turns
out that fit_intercept=False and penalty=I1 produces the best
classification accuracy on the dev set, which is 87.04%. The
classification accuracy of the same model on the test data
set is 85.32%.

H TP FP TN FN H
[69 8 8 19

Table 1. Confusion matrix for logistic regression on test dataset.

5.0.2. K-NEAREST NEIGHBORS

The hyper-parameter is the number of the nearest neighbors
whose labels will be considered when assigning label to
the current data point. For each of the 2 hyper-parameter,
the classification accuracy is calculated on the dev set to
determine the best one. Since [used 12-fold cross validation,
the actual classification accuracy is the average classification
accuracy across the 12 dev sets. From the graph, it turns

Grid Search Result on Dev Set

—— penalty: 1
penalty: 12

0.8704 1

0.8702

0.8700 1

0.8698 -

0.8696 -

CV score (accuracy)

0.8694 -

0.8692 1

0.0 0.2 0.4 0.6 0.8 1.0
fit_intercept

Figure 1. The relationship between the classification accuracy on
dev set and different combinations of fit intercept and regulariza-
tion of logistic regression

out that k=7 produces the best classification accuracy on the
dev set, which is 74.11%. The classification accuracy of the
same model on the test data set is 64.13%.

Performance of different K-values on Dev Set

0.74

0.72 1

0.70 1

0.68 -

Cross-Validated Accuracy on Dev Set

0.66

0.64 1

0 5 10 15 20 25 30
Value of K for KNN

Figure 2. The relationship between the number of neighbors used
and the cross validation accuracy on the dev set of K-nearest
neighbors

H TP FP TN FN H
[55 22 63 44

Table 2. Confusion matrix for k-nearest neighbors on test data set.

5.0.3. DECISION TREE

The hyper-parameter is the minimum number of samples
at leaf nodes and criterion (gini index and entropy). For
each different combinations of the 2 hyper-parameters, the

classification accuracy is calculated on the dev set to deter-
mine the best combinations of hyper-parameters. Since I
used 12-fold cross validation, the actual classification accu-
racy is the average classification accuracy across the 12 dev
sets. From the graph, it turns out that criterion=entropy and
min_sample_leaf=3 produces the best classification accuracy
on the dev set, which is 81.20%. The classification accuracy
of the same model on the test data set is 83.15%.

Grid Search Result on Dev Set

0.810 1

0.805 4

0.800 4

0.795 4

0.790 1

CV score (accuracy)

min leaf: 1
min leaf: 2
min leaf: 3
min leaf: 4
min leaf: 5

0.785 4

teetd

0.780 1

gini entropy
Criterion (gini/entropy)

Figure 3. The relationship between the classification accuracy on
dev set and different combinations of criterion and number of min
leaf of decision tree.

H TP FP TN FN H
[68 9 8 227]

Table 3. Confusion matrix for decision tree on test data set.

5.0.4. NAIVE BAYES

The hyper-parameter is the value of var_smoothing (a value
added to the given feature’s distribution variance). For each
value of the hyper-parameter, the classification accuracy is
calculated on the dev set to determine the best one. Since I
used 12-fold cross validation, the actual classification accu-
racy is the average classification accuracy across the 12 dev
sets. From the graph, it turns out that var_smoothing=1e-
06 produces the best classification accuracy on the dev set,
which is 86.36%. The classification accuracy of the same
model on the test data set is 84.78%.

H TP FP TN FN H
[67 10 8 18]

Table 4. Confusion matrix for Naive Bayes on test data set.

Performance of Different Var_smoothing on Dev Set

Cross-Validation Accuracy
o o (=} o o o o
~ ~ ~ [+ -] (-] [+
- o =] o N »H o
) A

o
~
N

0.000 0.002 0.004 0.006 0.008 0.010
Value of Var_Smoothing

Figure 4. The relationship between the classification accuracy on
dev set and different values of var_smoothing on naive bayes.

5.0.5. PERFORMANCE COMPARISON

After comparing the classification accuracy of the develop-
ment set and test set for both models, it turns out that the
logistic regression model always has a better classification
performance in terms of both classification accuracy on de-
velopment set and test set. The K-nearest neighbor model
has the worst performance on both development set and
test set. Naive bayes and decision tree models both have
relatively good classification performance on the test data
set.

6. Discussion
6.0.1. ERROR ANALYSIS

It turns out that most of the classification errors for the 4 ma-
chine learning models occur when the “oldpeak” (numerical
value measured for depression) has a small positive value
between 0-3, and the “fasting blood sugar” has a value of
0 (meaning the fasting blood sugar is less than 120mg/ml),
and when the resting electrocardiogram (RestingECG) has
a value of 0 (meaning it’s normal). There could be sev-
eral explanations for this. First, some features (such as the
level of depression) may be thought to be leading factors for
heart failure, but in reality, the effects those features exert
on the output are not as significant as they are thought to
be. Another explanation is that some other features, such
as the RestingECG, has even amounts of different values
spread across the dataset, and also have no direct bearing
on the outcome (the heart failure). That is, there are an
equal number of people with and without heart failure hav-
ing normal RestingECG. Next is the specific error analysis
on each model. As for logistic regression, I only used the
algorithm ‘liblinear’, which is the library for large linear

classification. However, other types of algorithm, such as
‘newton-cholesky’, may produce better result on the data
set. As for k-nearest neighbors, the primary source of error
is the high dimension of features, and the limited size of
training data. Both of those 2 factors lead to the distribution
of neighbors being ‘sparse’, which result in difficulties for
finding closest neighbors. As for decision tree, the error in
classification may be due to the fact that the data is noisy. In
other words, the training process may build up a tree of large
size in order to adapt to the noise in the data. However, that
leads to over-fitting and poor performance on testing data
set. As for naive bayes, even though I made the assumption
that the features are conditionally independent from each
other, in reality it may not always be the case. That could
lead to classification error as well.

6.0.2. POTENTIAL IMPROVEMENTS

As for the logistic regression model, one way I could think
of to improve the model’s accuracy is to normalize the input
features to the same scale, so as to prevent some features
having overly-dominating effects on the output than others.
Another way to increase the accuracy is to try different type
of algorithm, such as ‘newton-cholesky’ or ‘saga’. As for
the k-nearest neighbors model, one way I could think of
to improve the classification accuracy is to prune features
that have minimum effect on the classification outcomes.
This will make neighbors being close to each other. As
for decision tree, a potential improvement is to add further
restriction to the size of the tree, so over-fitting would be less
likely to happen. For naive bayes, a potential improvement
is to do some data pre-processing before hand. That is, to
identify which features are more likely to be related to each
other, and remove some of them accordingly.

7. Conclusion

In general, after the process of training and tuning hyper-
parameters on the training data set, the 4 models have the
majority of predictions of heart failures correct on the test
data set. It turns out that in order to further improve the
classification accuracy, different models have different re-
quirements on the data set. For example, K-nearest neigh-
bors expect the dimension of input features to be low, and
naive bayes assume the input features are (conditionally)
independent from each other. As for the implementation
process, it turns out that the process of determining which
hyper-parameters to tune for each model is challenging, and
oftentimes there are more than 1 hyper-parameter to tune.
I figured out that grid search is a helpful algorithm that en-
ables multiple hyper-parameters to be tested simultaneously.
However, the limitation of grid search is that if there are a
wide range of values for each hyper-parameter to be chose
from, it is time consuming. Something I observe unexpected

is that for all the 4 models I built, the false negative rate is
always higher than the false positive rate, which suggests
that all models have tendencies to classify an example as
‘having heart failure’ than not. Also, logistic regression
has the best classification accuracy on test data set, and
k-nearest neighbors has the worst. In terms of runtime, lo-
gistic regression, naive bayes and k-nearest neighbors can
have training and testing be done in time that is linear in
size of the training data set. The runtime of decision tree is
dependent on whether the tree to be constructed is balanced
or not.

References

Dissanayake, K. and Johar, M. G. M. Comparative study of
heart disease classification. PhD thesis, School of Grad-
uate Studies, Management Science University, School of
Computing, Pioneer Institute of Business & Technology,
2021.

Kaggle. Heart failure prediction dataset, 2021.

