

CSCI 467: Machine Learning

Discussion – Review of Linear Methods

Slides by: Ameya Godbole (Feb 2024) Materials from: https://usc-csci467.github.io/

High level categories in ML

Based on objectives

Unsupervised Learning

Reinforcement Learning

Parametric vs Non-Parametric	
Learn a fixed-size set of parameters	Learnable parameters depends on size of training data
Can throw away data after training	Predictions uses training data

Despite the name, non-parametric **does not mean** "no parameters"

Simplest Example: k-Nearest Neighbors

- On test example x, predict the **most common label** among the **k neighbors of x**
- Nearby examples have the same label
- Need to define a **similarity function**
- Low bias: Makes no assumption about decision boundary
- **Potentially high variance:** Decisions are very sensitive to training data
 - "Curse of dimensionality"

Complex Example: Kernel Methods

- Like k-NN, decision depends on "nearby" training data
- Kernel functions: (loosely) measures closeness of two points

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x^{(i)}, x^{\text{test}})$$

- a 's are parameters: one for each training data point
- How do we learn them?
 - Lec 8 covered connection between logistic regression and an algorithm for learning a
 - o SVMs

Kernel Trick

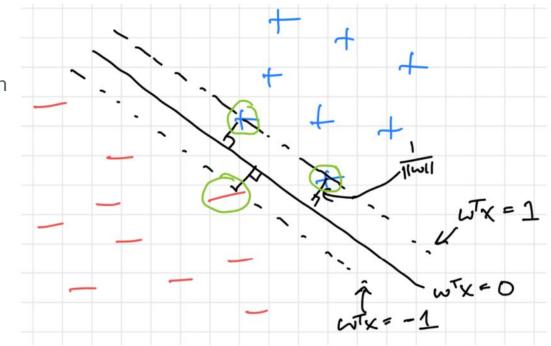
Use kernel functions between two data points instead of Computing dot product in large feature spaces

Why use kernel methods?

- + Get benefit of using large feature spaces (more expressive)
- + Avoid computation of explicitly writing out the data point in a large feature space
 - RBF kernels represent dot product in infinite dimensional space
 - You'll work through this in the homework
- Inference time has a dependence on number of training datapoints

Support Vector Machines

- Max-margin classifier
 - Objective function incentivizes a large margin between the two class



• Can be derived as a special case of replacing logistic loss with hinge loss

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} -\log \sigma(y^{(i)} \cdot w^{\top} x^{(i)}) + \lambda \|w\|^{2}$$

• Can then be kernelized to take advantage of kernel trick

$$L(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - y^{(i)} \sum_{j=1}^{n} \alpha_j k(x^{(j)}, x^{(i)}) \right]_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(i)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_j k(x^{(j)}, x^{(j)}) \right)_{+} + \lambda \left(\sum_{i=1}^{n} \alpha_i \alpha_$$

SVM: What are support vectors?

• Like other kernel methods, the SVM decision function can be stated as:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x^{(i)}, x^{\text{test}})$$

- However, optimizing the SVM objective leads to:
 - \circ α being non-zero only for **support vectors:** examples that lie on the decision boundary or within the margin and misclassified examples
 - $\circ \quad \alpha$ being zero for examples that are correctly classified
- This means at test time, the decision depends only on a small number of support vectors and not the entire training set

SVM: Optimization

- There exist alternative techniques to minimize SVM loss
 - Linear optimization libraries
- These approaches only require dot-products between the data points
 - Thus, they can use kernel functions
- Combine this with efficient prediction using kernels

This is the big reason why SVMs and kernels are a good match!

Quick Note: All non-parametric approaches discussed, have corresponding variants for regression