1/12/2024 Section

- Vector $V=\left[\begin{array}{c}v_{1} \\ \vdots\end{array}\right] \in \mathbb{R}^{(d)}$ how many numbers in v
- Vector $V=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{d}\end{array}\right] \in \mathbb{R}^{d}$ is real number

$$
x=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

vector has magnitude and direction

$$
\|x\|=\sqrt{\sum_{i=1}^{d} x_{i}^{2}}
$$

("Euclidech norm")
Unit vector: vector of magnitude 1
egg. $\frac{x}{\|x\|}$ is unit vector in same direction as x

$$
L \text { eg. } \frac{x}{\|x\|}=\left[\begin{array}{l}
3 / 5 \\
4 / 5
\end{array}\right]
$$

- Dot product ("inner product")

For 2 vectors $v, u \in \mathbb{R}^{d}$, dot product is

$$
\begin{aligned}
& \text { or } 2 \text { vectors } v, u \in \mathbb{R} \text {, dot product is } \\
& v^{\top} u=v_{1} u_{1}+v_{2} u_{2}+\cdots+v_{d} u_{d}=\sum_{i=1}^{d} v_{i} u_{i}
\end{aligned}
$$

Fact: $v^{\top} u=\|v\| \cdot\|u\| \cdot \cos \theta$

Angle between V \& a

- (point in similar direction)
(point in opposite direction)

If $V^{\top} U=0$, then $V \otimes U$ are "perpendicular" or "orthogonal"
Fact: $V^{\top} V=\|V\|^{2}$

- Matrix - vector product:

For $A \in \mathbb{R}^{(m \times a n}$, vector $v \in \mathbb{R}^{n)}$, then $A v \in \mathbb{R}_{1 / 8}^{(m)}$

Equivalently:

$$
m\left[\left|\left|\left.\right|_{n}\right|\right|\right]\left[\begin{array}{c}
\vdots \\
\vdots
\end{array}\right] n=v_{1} \alpha_{1}+\cdots+v_{n} \alpha_{n}
$$

where α_{i} is it column of A

Quick phot for 2×2

$$
\left.\left.\begin{array}{|l|l}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
\hline
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\begin{array}{l}
A_{11} V_{1}+A_{12} V_{2} \\
A_{21} V_{1}+A_{22} V_{2} \\
\hline A_{11} \\
A_{21}
\end{array}\right]+V_{2}\left[\begin{array}{l}
A_{12} \\
A_{22}
\end{array}\right]
$$

For matrix $A \in \mathbb{R}^{m \times n}$ the transpose $A^{\top} \in \mathbb{R}^{n \times m}$

Note: Dot product is special case of matrix- rector multiplications
For $v, u \in \mathbb{R}^{d}$,
$v i e w, v$ as column vector $\approx d x($ matrix $d[]$ So V^{\top} is row vector $\approx 1 \times d_{d}\left[\begin{array}{l}d\end{array}\right]$ so $v^{\top} u$ yields "(-d vector" as result \approx scalar
Gradients:
For function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$
input=
d-dim. vector

$$
\nabla_{x} F(x)=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}} \\
\vdots \\
\frac{\partial F}{\partial x_{d}}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Examples: } \\
& \begin{aligned}
\nabla_{x} V^{\top} x=? \quad \frac{\partial}{\partial x_{i}} v^{\top} x & =\frac{\partial}{\partial x_{i}}\left[v_{1} x_{1}+\cdots+v_{i} x_{i}+\cdots+v_{d} x_{d}\right] \\
& =\frac{\partial}{\partial x_{i}} v_{i} x_{i}=v_{i} \\
& =\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{d}
\end{array}\right]=V \quad \text { Now you con use }
\end{aligned}
\end{aligned}
$$

Normal derivative rules apply:

$$
\begin{aligned}
\nabla_{x} F(x)+G(x) & =\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} F(x)+G(x) \\
\frac{\partial}{\partial x_{\alpha}} F(x)+G(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial F}{\partial x_{1}}+\frac{\partial G}{\partial x_{1}} \\
\vdots
\end{array}\right] \\
& =\left(\nabla_{x} F(x)\right)+\left(\nabla_{k} G(x)\right)
\end{aligned}
$$

Same applies to Chair n Rule
eg. $\nabla_{x}\left(v^{\top} x\right)^{3}=3\left(v^{\top} x\right)^{2} \cdot v$
because $\frac{\partial}{\partial x_{i}}\left(v^{\top} x\right)^{3}=\frac{\partial\left(\left(v^{\top} x\right)^{3}\right)}{\partial\left(v^{\top} x\right)} \cdot \frac{\partial\left(v^{\top} x\right)}{\partial x_{i}}$

