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Continuing our “Reality Check”

• Do models really 
“see” images the 
way humans do?

• Are models 
learning 
shortcuts rather 
than actually 
solving the task?
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Adversarial Examples
(Last time)

Spurious Correlations
(Today)



Previously: Machine learning is a tornado

• …it picks up everything 
in its path

• Data has all sorts of 
associations we may 
not want to model
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Some pictures of wolves

What do these have in common…?
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What does the model learn?

• Model misclassifies husky (dog) 
as a wolf

• Why? Model sees snow and 
associates it with wolves

• This is a spurious correlation
• Model is just trying to associate 

input features with label

• Snow is correlated with “wolf” label, 
so model learns this

• But this is spurious—not part of the 
actual task

5https://arxiv.org/pdf/1602.04938.pdf 
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Spurious correlations in medicine

• Task: Detecting pneumonia 
from chest X-ray

• Spurious correlation: 
Metallic token radiology 
technicians place on patient
• Different hospitals do this 

differently
• Different hospitals have 

different puneumonia 
prevalence

• Result: Model relies heavily 
on these hospital-specific 
tokens!
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https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002683&type=printable 
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Spurious correlations in NLP

• Hate speech detection: Identity 
mentions lead to model 
predicting text as toxic
• Spurious correlation: Hateful 

speech directed at specific 
groups often names those groups

• Sentiment analysis: Some 
names associated with 
positive/negative sentiment

7
https://aclanthology.org/2021.eacl-main.274.pdf
https://aclanthology.org/D19-1578.pdf  

https://aclanthology.org/2021.eacl-main.274.pdf
https://aclanthology.org/D19-1578.pdf


Spurious correlations and generalization

• Task: Identifying bird species

• Spurious correlation: Waterbirds tend to be pictured 
over water

• Generalization challenge: Cannot identify ducks on 
land!
• In general: Overreliance on spurious correlations means 

your model will perform poorly in scenarios where the 
correlation no longer holds

8
https://arxiv.org/pdf/1911.08731.pdf 
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Avoiding overreliance on spurious correlation

• Lots of research, but no guaranteed 
solutions

• Diversifying dataset often helps

• General recommendation: Evaluate out-
of-distribution generalization
• Go beyond the hospitals you trained on

• Find pictures of wolves in atypical 
backgrounds

• Practice caution: Don’t assume model 
will generalize without measuring first
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Announcements

• Homework 4 out
• Due Thursday, April 25 (last day of class)

• Final Project Report
• Due Friday, May 3
• 5-6 pages, use same LaTeX template as before
• Show model improvements relative to midterm report
• Submit code & Readme
• See website for details

• Final Exam Logistics
• Tuesday, May 7 from 2-4pm
• Room: TBD
• Allowed 2 (double-sided) 8.5”x11” sheets of paper
• Exam is cumulative, more emphasis on post-midterm material
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Insurance Risk Models

• Insurance companies must decide which 
patients are eligible for expensive high-
risk care management programs

• Priority given to patients with greatest 
future care needs

• Thus: Insurance companies use 
algorithms designed to predict future 
care needs

• ML problem: Given information about 
patient right now, predict how much 
medical care they will need in the future
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Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.

https://www.ftc.gov/system/files/documents/public_events/1548288/privacycon-2020-ziad_obermeyer.pdf


Risk Models are Biased

• Study done on deployed risk prediction 
tool used to assess 200 million people 
each year

• At the same score, black patients have 
more chronic conditions than white 
patients

• Black patients have to be much sicker 
to get defaulted into the care 
management program
• 97 percentile risk score
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Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.

https://www.ftc.gov/system/files/documents/public_events/1548288/privacycon-2020-ziad_obermeyer.pdf


Risk Models are Biased

• Zoom in on 
most common 
chronic 
conditions

• Again, black 
patients are 
sicker than 
white patients at 
same risk score
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Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.

https://www.ftc.gov/system/files/documents/public_events/1548288/privacycon-2020-ziad_obermeyer.pdf


Why Might These Models be Biased?
• Model inputs: Patient age, sex, current health conditions, 

medicines

• Model was trained to predict total medical costs in next 
year

• Problem: Future medical cost is not same as need for 
medical care
• Poor patients face more barriers to getting care

• Lower health spending by black patients in general, possibly due 
to higher mistrust of medical system

• Risk score is actually not biased w.r.t. costs
• Model correctly learns from the data that black patients with 

same medical conditions spend less money on average on 
healthcare

• Feedback loop: Underserved populations remain 
underserved

• Fix: Use other proxy besides cost (e.g., future health 
complications)
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Obermeyer et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.

https://www.ftc.gov/system/files/documents/public_events/1548288/privacycon-2020-ziad_obermeyer.pdf


Risk Models still Predict Cost
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https://www.milliman.com/en/products/mara 
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Fairness Problems

• Allocative harms

• Unequal accuracy

• Representational harms
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Allocation problems

• Problems in which 
individuals are evaluated 
for receiving certain 
opportunities or resources
• Receiving medical treatment

• Bail or sentencing decisions

• Receiving loans

• Job resume filtering 
(Applicant tracking systems)
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“In effect, Amazon’s system taught itself that male 
candidates were preferable. It penalized resumes 
that included the word “women’s,” as in “women’s 
chess club captain.” And it downgraded graduates of 
two all-women’s colleges, according to people 
familiar with the matter.”

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-
against-women-idUSKCN1MK08G 

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G


Basic setup

• X: An individual (or features thereof)

• Y: Something you want to predict 
• E.g., Will this person repay a loan or not (1 if yes, 0 if no)

• Note: These are often actual prediction problems, not 
labeling—lots of fundamental uncertainty!

• R: Classifier’s prediction
• For now, just think of this as 1 or 0

• But it can also be a continuous output, such as P(y=1 | x; θ)

• A: Sensitive attribute (e.g., gender, race, etc.)

• We ask: Is the model fair to individuals with different 
values of A?
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No fairness through unawareness

• First attempt: Just don’t 
depend on the sensitive 
attribute (“blindness”)

• Problem: Sensitive attribute 
can often be reconstructed 
from other features
• Suppose you want to be fair 

across racial groups
• Even if you don’t use race to 

predict, zip code has a lot of 
information about race

• Example: Insurance risk model 
from before did not use race as 
a feature

20
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.



How can we measure (un)fairness?

1. Independence (statistical parity)

2. Separation (equalized odds)

3. Sufficiency (calibration within groups)

22



1. Independence

• Independence:
• Equivalently for binary predictor:

•  Very weak: says nothing about Y!
• Can be satisfied by predicting well on group a 

and randomly with same base rate on group b

• May also be too strong if 

23
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

Prediction R=1 Prediction R=0



2. Separation / Equalized odds

• Separation:
• Equivalently for binary predictor:

• In English: Recall on both Y=1’s and 
Y=0’s are same for both groups

• Recall defined as

24
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

Y=1

Y=0

Prediction R=1 Prediction R=0
Legend



Trade-offs between false positives/negatives

• Setting: We have a continuous classifier output R
• E.g., For input x, R = P(y=1 | x; θ)

• Default classification rule: Predict y=1 if R > 0.5, 
y=0 otherwise

• But you can choose any threshold!
• High threshold (e.g. 0.9): Predict fewer 1’s

• Low threshold (e.g. 0.1): Predict fewer 0’s

• False positives: Predict 1 but real y=0
• Higher threshold reduces false positives
• Measured by False Positive Rate:

• False negatives: Predict 0 but real y=1
• Lower threshold reduces false negatives

• Measured by True Positive Rate (same as recall): 

25

Y=1

Y=0

Legend
Prediction R=1 Prediction R=0

False positives: 0
False positive rate: 0/4

False negatives: 2
True positive rate: 4/6

(=1 – 2/6)

Split the dataset into two halves (Y=1 and Y=0)
False positives are errors when Y=0
False negatives are errors when Y=1



3. Sufficiency / Calibration within groups

• Sufficiency:
• Equivalently for binary predictor:

• In English: Precision on both Y=1’s and 
Y=0’s are same for both groups

• Precision defined as

28
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

Y=1

Y=0

Prediction R=1

Prediction R=0

Legend



Calibration

• We can instead consider the 
model output R to be the 
probability P(y=1 | x; θ)

• With an ideal model, what 
should
equal?
• Ideally should equal 0.8!

• If this holds for all values of 
R, model is called well-
calibrated
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Sufficiency and Calibration

• If R is continuous valued, 
sufficiency says for each R 
value, rate of Y=1 should 
be same between groups

• If model is well-calibrated 
on each group, then it 
satisfies sufficiency

30
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.



Great, now we can make things fair…?

• Surprisingly, these definitions of fairness are mutually 
incompatible in many natural settings!

• No system (automated or human) can simultaneously be fair in all 
these ways!
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Independence (1) vs. Sufficiency (3)

• Independence and sufficiency only compatible if
• Very strong—usually base rates of Y given A are not the same

32

Independence Sufficiency

Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.

Base rate of Y
in population a

Base rate of Y
in population b



The story of COMPAS

• COMPAS: Proprietary 
software that estimates 
risk of defendant 
committing another crime

• Can be used in 
determining bail 

• Results shown to judges 
during sentencing in 
several states

33
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


The story of COMPAS

• “The formula was particularly likely to falsely 
flag black defendants as future criminals, 
wrongly labeling them this way at almost 
twice the rate as white defendants.”

• “White defendants were mislabeled as low 
risk more often than black defendants.”

34
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing 
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Is COMPAS unfair?

Unfair: Black individuals who did not 
reoffend were more likely to be 
categorized as high risk

Fair: For given risk score, 
chance of recidivism same 
for each population

35
https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c 

Unfair based on
Separation

Fair based on
Sufficiency

https://medium.com/soal-food/what-makes-an-algorithm-fair-6ad64d75dd0c


Returning to Insurance

• Insurance risk models fail the test 
of sufficiency
• (The same test that COMPAS 

passes)

• Clearer case of fairness problem 
with the model

36

Unfair based on
Sufficiency



Where do we go from here?

• There is a fundamental trade-off between 
different natural notions of fairness

• Some systems may lie in a “gray area” 
where they appear fair in one way, but 
unfair in another

• Other systems may be more clearly unfair

• Auditing systems requires thinking deeply 
about what notion of fairness matters for 
the task at hand
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Outline

• Allocative harms

• Unequal accuracy

• Representational harms
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Unequal accuracy

• Allocation problems: Each example represents one individual

• In other scenarios, individuals are not examples but users who 
produce (many) examples

39



The TIMIT dataset (1988)

• Important early benchmark 
dataset for speech 
recognition
• 6300 utterances, 5 hours

• 630 speakers, 10 sentences 
each

• Underrepresentation problem!

• Even today, higher error rate 
for black vs. white speakers 
for commercial ASR systems

40
Barocas, Hardt, and Narayanan. Fairness and Machine Learning: Limitations and Opportunities.



Gender Shades

• 2018 study: 
Commercial facial 
recognition systems 
much less accurate on 
darker-skinned females 
than other groups

41https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf 
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Language variation

Language identification systems 
miscategorize Tweets in African 
American English (AAE) as non-
English at a much higher rate

• May affect users of systems

• May also affect computational 
analysis of text data

42
Blodgett, Green, and O’Connor. “Demographic Dialectal Variation in Social Media: A Case Study of African-American English.” EMNLP 2016.



Outline

• Allocative harms

• Unequal accuracy

• Representational harms
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Representational harms

• Previously
• Allocative harms: Individuals are examples, they can be treated unfairly

• Unequal accuracy: Individuals have examples, they can be helped or not 
helped

• Now: Thinking about broader externalities
• Are some stereotypes reinforced by the outputs of this system?

• Harms become evident on longer time scales
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Machine translation and gender

• In some languages, 
nouns must specify 
gender

• When translating from 
gender-neutral language, 
system must(?) guess

• Representational harm if 
“doctor” is always 
assumed to be male

45
https://ai.googleblog.com/2020/04/a-scalable-approach-to-reducing-gender.html 
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Search engine results

• Many results may “match” 
a given search query—
which are shown?

• Representational harms 
can occur despite literal 
match with query

• Similar issues with gender 
stereotypes and 
occupations

46https://www.washingtonpost.com/news/morning-mix/wp/2016/06/10/google-faulted-for-racial-bias-in-image-search-results-for-black-
teenagers/ 

https://www.washingtonpost.com/news/morning-mix/wp/2016/06/10/google-faulted-for-racial-bias-in-image-search-results-for-black-teenagers/
https://www.washingtonpost.com/news/morning-mix/wp/2016/06/10/google-faulted-for-racial-bias-in-image-search-results-for-black-teenagers/


Conclusion

• Spurious Correlations: Patterns that are useful on the training data 
but don’t generalize
• E.g., Focus on background instead of foreground

• Fairness: Breadth of potential harms
• To individuals being evaluated

• To users attempting to use tools

• To broader society due to shifts in perception

• Connection: ML systems learn patterns in the data, including ones 
we may not intend
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