
/I/2024: -Learning

But first: What is the optimal policy if we know the full MDP?
-

We know T (S
,
a,s') &

Rewards (S
,a,
S')

Vopt(s) = maximum possible expected
- discounted sum of rewards
"Optimal value

for any policy, starting at states

Gopt(5, a) = maximum possible expected
- discounted sum of rewards for any policy,
"Q-Value" starting at state & forcedto take action a↓

Vopt(s) = + O if Is End(s)
may else(a = Actions (a) s, a)

- play optimally after choosing a

pick the best a

⑳ob(s, a)=
s [sas + US

Reward now Future reward
(no discounting) (discounted)

T↓we knew opt(s,a) for all S & a
,

Optimal policy T* (S) = argmax Qopt(s,a)
AtAction(s)

Lesson : If we can estimate <opt(sic) Well,
we can deduce the optimal policy !



NoReinforcement Learning
· We believe the world works like an MDP
=· But we don't know TCS

,
a ,
s & Reward (S,a,5)

- can only learn about world by interacting with it.

RL training Pseudocode :

For episode = 1
,

2
,
3, ...

:

St Start

For EF 1
, ...

·

· AgentChoose action at
= Tract (St)-

policy used to act

during learning
· Agent receives :

- Reward Tt
- New State St+

· Update agent's parameters (AIA learning
· If IS End (St+) : break

Learning Algorithm : Q-learning-

Goal : Learn Qops,a) for every >(S
,
a

(s !,a) = on

estimateVersion1: Tabular Q-learning of

Maintain a big table ofall Qupt(s', al)
,

StatesX all actions State
each#

Can initialize all to 0

SF
,

1

parameter
"as to learn

actions



How to learn /S
,
a) ?

We get 1 "training example" at a time

consisting of Cs
,
a

, r ,
s)

updateRule enragefogstnewsmatson
r

is e
L

-
↑ ↓ anticipated

reward future reward"learning rate"
a
ve Low(20 .1) guess Estimate of total future reward

where(s) = < Action(s) & (s,a) if not ISEnd(s)
20 else

-

Allow do we choose Tract ?
- Natural answer (WRONG) :

At each state s, choose a- argmax
& (s,a)

at Actions(s)
~ optimal it & (s,a) =

Font(S/a)

X Bad idea early in training

Suppose we one visit s
,
take as receive large reward .

&

=> Q(s,a) would be large
=> "Natural" policy would always take a in state s

All exploitation , no exploration
-SimpleFix : E-Greedy

# each timestep , at state S :

④(s,a)S

- with probability 1-8 chooseama (s)

(Exploitation)
- with probability & : Choose random action

in Actions (S)
(Exploration)

Usually 2 = 0. 1 or 0. 01
&After training : Set E= 0



Howto deal with large state spaces ?

Ce
.g.
location of robot)Option:Discreestatespaceutinostry buckets

# - Discretive area into

Sx5 grid
= 25 States

= Q-learning withOptions not Q-earning
Linear Function Approximation

Idea: Q-Learning is kind of like regression where

x = (S
,a) , y

= Q-value
-

Not like supervised learning
b/c we don't know -values

Gode : Learn a linear model mapping (s,a) to Q-value
① Need feature function &(5, a) = IRd

② LearnparameterrectorWereed(s ,a)

How to learn u? Re-examine old Q-Learning Formula.

& (s
,a)= (1 -2)(s,a) + y(r + UV(S1))
·(s

,a) -2a) =( ))))
&

learninga "gradient"



For Q-Learning with Function Approx :

minimize squared error between

- && (s,a) and r+ Y (s)
- L
"prediction" "target

Loss (w) = I ( ) - (r + Y (S1)]>

DwLoss(w) =
-X · (wT (s

,a) = (v + ↑ (s1))) · &(S,a)
-

so the gradient descent update is :

w = w -
.Dr Loss(u)

=

w -2(w
+ &(s,a) - [r+ Y (s1]) · P(s,a)


