4/9/2024: Algorithms for Bandit Problems

Exploitation
want fo try all the possible actions enough times to gain knowledge of which action is best
vs. Exploitation
Use current knowledge to do what seems optimal
"Prescribe the best treatment"
"Try various medlars"
Alyortum: Upper Confidence Bound (UCB)
Idea:

- Player is estimating $N(a) \leftarrow$ expectal reward when
- Escrmates are uncertain
\rightarrow UCB: represent uncertaing as a confidence interval "I think $N(a)$ is between 0.5 and 0.8 "
- At each time t, playing octoon a

Play action with largest upper bound
why? Optimistic in the face of uncertainty L choose actor win highest potential to Le good
Actual Algorotlum:

- Define $n_{t}(a)=\sharp$ of times "size of dataset" we tried action a up until time t

$$
n_{8}(1)=3, \quad n_{8}(2)=4
$$

- Define $\hat{N}_{t}(a)=$ Sample mean of rewards culen falarg action a up until time t

t	A_{t}	R_{t}
1	1	$1-$
2	2	$0-$
3	1	$0=$
4	1	$0=$
3	2	1
6	2	$1=$
7	2	$1=$
8	$?$	

$$
\hat{N}_{8}(1)=1 / 3 \quad \hat{N}_{8}(2)=3 / 4
$$

How uncertain are or estimates $\hat{N}_{t}(a)$? lid.
A: In several, sample mean over n datapoints has variance of $\frac{6^{2}}{n}$ <variance of one sample
\Rightarrow standard deviation is $\frac{\sigma}{\sqrt{n}} O\left(\frac{1}{\sqrt{n}}\right)$
For UCB: for each actors, we use a confidence interval of $\hat{N}_{t}(a) \pm \sqrt{\frac{2 \log t}{n_{t}(a)}}$

$$
N(a) \in\left[\hat{N}_{t}(a)-\sqrt{\frac{2 l_{g} t}{n_{t}(a)}} \frac{=U C B_{t}(a)}{\hat{N}_{t}(a)+\sqrt{\frac{2 l g t}{n_{t}(a)}}}\right] \text { its } 0\left(\frac{1}{\sqrt{n_{t}(a)}}\right)
$$

Only doing exploitation chooser action based on this only voes proorlevouradjel not trying to learn more Can get stuck playing suboptimal action
= balance

Why is it

Gets boyer over fine (slowly) \Rightarrow Never completely role out an action It we avoid an action, its UG? grows over time until we toke if again

T Gets bigger as we collect more data
\Rightarrow this term gets smaller
\Rightarrow over time, do less exploration

Fall UCB algorithm:

1. For $t=1,-, K$. Try each action once
2. For $t=k+1, \ldots, T$: choose $A_{b}=\operatorname{argmax} \cup C B_{t}(a)$

Theorem: If ale rewards are in $[0,1]$:
Regret of $U C B$ is $O(\sqrt{K T \log T})$
Importantly: this is sublinear in T
Alternatively: Define Average Regret as $\frac{\text { Regret }}{T}$
(amount of regret per fimestep)
The average regret of $U C B$ is $O\left(\frac{\sqrt{k T \log T}}{T}\right)$
this $\rightarrow 0$ as $T \rightarrow \infty$
Reinforcement Learning

- Actions determine what rewards you observe
- AND actions also can change state (of yourself, of world)

Class selection

- Action: Take sour classes, not others each semester
- Reward: Enjoyment, job
- State: What subjects do you know

Otter excauples:

- Robotics
- Video games
(1) Formalisms to define a world (no (earning yet)
(2) Learn how to act in this world
(1) Assume the world is a Markov Decision Process (MDP)

Example MDP:
At each timestep:

- Agent can stay or quit
- IE quit = receive $\$ c o$ gave ends
- If Stay:
- Probability $1 / 3$: Get $\$ 0$, end
- Probability 2/3: Get $\$ 6$, continue

Formal description of MDP:

- Set of States S (i.g.ssible configurations / locations af robot)
- Starting state Start
- Actions (s): Set of possible actions in state s
- T($\left.s, a, s^{\prime}\right)$: Probability of tensitonirg th state s^{\prime} after taking action a ti stook S
(eg. T (start, stay, start) $=2 / 3$)
- Reward $\left(s, a, s^{\prime}\right)$: Reward received when transitioning to s state s^{\prime} after talking action a in state S
unknown during Cere. Reviadi (store, Stay, start) $=6$
learning
- ISEnd (s): Is this an end state?

Gave ends when reaching end state
What should an agent do If MOP is known?
Policy: Strategy used by an agent, denoted π
mapping form states to actions

$$
\pi(s) \rightarrow a \in \operatorname{Actions}(s)
$$

current state
chosen action

Value Function: The value $V_{\pi}(s)$ for policy π and stats is expected $_$Sum of rewards storting at s, discounted playing policy π

Discounting: Future rewards are less valuable - At each finestep, probability of survival <1 introduce a discount factor $\gamma \in[0,1]$ = prob. of Survival at each fimestep
If we got rewards $r_{1}, r_{1}, r_{3}, \ldots$ dscoonted sum is $r_{1}+\gamma r_{2}+\gamma^{2} r_{3}+\cdots$

