4/2/2024: Learning GMms
Given data, how to learn $\pi_{1: k}, N_{1: k}$, and $\sum_{i: k}$?
Algorithm: Expectation -Maximization (EM) Used wherever you have:
(1) Latent variables (that are unborn) z_{1}, \ldots, z_{n}
(2) Unknown parameters (need to (earn) $\pi_{1: k}, \mu_{1: k}, \sum_{1: k}$

Strategy: Alternate between guessing each one
(1) Ester ("Expectation"):

Infer latent variable distribution arternatif using current guess of parameters In C. Means based on current centroids
(2) M-step ("Maximization"):

Choose parameters that fit the data best based on interred distillation of latent variables
\approx choose new centroids based on new assignment

E-step For each $i=1, \cdots, n$, we infer:

$$
R_{i j}=p\left(Z_{i}=j \mid x_{i}=x^{(i)} ; \underset{\pi_{i: k},}{ } \quad \begin{array}{l}
\text { current gross of } \\
\mu_{1: k}, \sum_{l i k}
\end{array}\right)
$$

Run inference using Bayes Rule

prov of being from cluster j

M-step Inputs are:

- Actual values of X_{i} 's
- Inferred districation of all Z^{i} 's

Gave: Find the bast π, μ, ε
Imagine: we actually had true value of Z_{i} for each i Then we could apply maximum likethard Estimation:
masianize $\sum_{i=1}^{n} \log P\left(z_{i}, x_{i}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \log P\left(z_{i}\right)+\log P\left(x_{i} \mid z_{i}\right) \\
& \left.\left.=\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbb{I}\left[z_{i}=j\right]\right\}\left(\log P\left(z_{i}=j\right)+\log P\left(x_{i} \mid z_{i}=j\right)\right)\right]
\end{aligned}
$$

Actude M. step: Approximate the MLE objectme using inferred $R_{i j}$'s
Expected Complete log-likethood (ECLL)

$$
\begin{aligned}
& \operatorname{ECLL}\left(\pi_{l: k}, N_{l: k}, \sum_{l: k}\right)=
\end{aligned}
$$

Eypectect value with Raj's as weights

Now: Derive formate for N_{j} to maximizes ECLL, discuss formulas for $\pi_{i} \& \sum_{j}$
Plan: Take $\nabla_{N_{j}} E C L L$, set to 0 , Solve for N_{j}

$$
\begin{aligned}
& =\sum_{i=1}^{n} R_{i j} D_{a j} \log _{P} P\left(X_{i}=x^{(i)} \mid z_{i}=j\right) \\
& \text { Pug in mutitaride } \\
& \text { gaussian path formula } \\
& =\frac{1}{(2 \pi)^{0 / 2}} \frac{1}{\sqrt{\operatorname{dot}\left(\sqrt[\Sigma]{\Sigma_{i}}\right)}} \exp \left(-\frac{1}{2}\left(x^{(i)}-N_{j}\right)^{\top} \Sigma_{i}^{-1}\left(x^{(i)}-N_{j}\right)\right) \\
& \text { constant docent depend } \\
& \text { on } \mathrm{Nj}_{j} \\
& \rightarrow=\sum_{i=1}^{n} R_{i j} \nabla_{\mu_{j}}\left(-\frac{1}{2}\left(x^{(i)}-\mu_{j}\right)^{\top} \sum_{j}^{-1}\left(x^{(i)}-\mu_{j}\right)\right) \\
& \text { Fact: } \nabla_{x} x^{\top} A x=2 A x \\
& =\sum_{i=1}^{n} R_{i j}\left(-\frac{1}{2} \cdot \not 2 \sum_{j}^{-K}\left(x^{(i)}-N_{j}\right) \cdot \neq 1\right)=0 \\
& \text { multiply by } \Sigma_{\text {; }} \text { on left } \\
& \sum_{i=1}^{n} R_{i j}\left(X^{(i)}-N_{j}\right)=0
\end{aligned}
$$

$$
\sum_{i=1}^{n} R_{i j} x^{(i)}=\sum_{i=1}^{n} R_{i j} N_{j}
$$

$P\left(X_{1}\right.$ is in cluster $\left.j\right)$
$P\left(X_{2}\right.$ is in duster $\left.j\right)$
$+P\left(x_{n}\right.$ is in clorterj)
Expected toot points in chaster j
weighted average of $x^{(i)}$ weighted by the probability that read. x (i) is in cluster j

M-step formulas for $\pi ;$ \& \sum_{j}

$$
\begin{aligned}
& \left.\pi_{j}=\frac{\sum_{i=1}^{n} R_{i j}}{n}\right] \text { "soft" version of } \\
& \Sigma_{j}=\frac{\sum_{i=1}^{n} R_{i j}\left(x^{(i)}-N_{i}\right)\left(x^{(i)}-N_{j}\right)^{T}}{\sum_{i=1}^{n} R_{i j}}
\end{aligned}
$$

\#ox points in cattery
total \# points in dale

Formula for covariance matron is $\frac{1}{n} \sum_{r=1}^{n}\left(x^{(i)}-N\right)\left(x^{(i)}-N\right)^{\top}$
\rightarrow "Weighted averoge" version ot covariance matrix formula

Dimensionality Reduction

Clustering

Dimensionality Redidtion:
Find a low-dinersiond subspace that preserves most information in the dataset

Method: Principal Components Andersis (PCA)
commonly: map high -dim data $\rightarrow 2$ dimensions
Starting Paint: Try to -ind best 1-D subspace
Key Assumption: Data has mean 0

$$
\text { ie. } \quad \frac{1}{n} \sum_{i=1}^{n} x^{(i)}=0
$$

Enforce by computing mean of data, then subtract it from each example
What is our paranbeler to learn?
Learn a single parameter vector $\omega \in \mathbb{R}^{d}$ that defines the $1-0$ subspace to project onto
Weill focus only on ω where $\|\omega\|=1$ since we only care about direction
"Reconstruction Error": How well can we reconstruct $\left\{x^{(n)}, \ldots, x^{(n)}\right\}$ based on only the
projections of $\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ onto suspace defined by w

