3/26/2024: K-Means Clustering
Machine Learning: Algorithms that learn from data

Supervised
Learning

Training dataset
$D=\left\{\left(x^{(1)}, y^{(n)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$
T
input out
input output
to model (mad products this)

Goal: Learn mapping
from x to y

Tramirg dataset only contain x's

$$
\begin{aligned}
& D=\left\{x^{(1)}, \ldots, x^{(n)}\right\} \\
& \text { No correct output"" }
\end{aligned}
$$

No "correct output"
Goal Lear what structure is present in data
(1) Grovp/sebpopulation/ cluster structure
(2) low-dimenstional
structure
(3) Similarity / Relaforonships between words (word 2 vec)

Input: Dataset $=\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ and \#of clusters K
Output: An assignment z_{1}, \ldots, z_{n}
where each $z_{i} \in\{1,2, \ldots, k\}$ denotes the cluster assigned to exaundle $x^{(i)}$

K-means Clustering Algorithm Idea\#t: Write down a loss function to define "badness" of assignment $21, \ldots, 2 n$
dea \#2: Add more parameters to help define loss furc. learn the "Centroid" of each custer
N_{1}, \ldots, N_{k} where
$N_{j} \in \mathbb{R}^{d}$ is "center of mass" if coaster j
Pay off: LOSS of assignment \& choice of centroids is how for each $x^{(i)}$ is form its assignee centroid

$$
\begin{aligned}
& \text { Loss: } \\
& L\left(z_{1}: n, N_{1: k}\right)=\sum_{i=1}^{n}\left\|x^{(i)}-\mu_{z_{i}}\right\|^{2} \\
& =\left[z_{1}, \ldots z_{n}\right]
\end{aligned}
$$

"Reconstruction Error": of Custer assigned to $x(i)$
If we once knew assignments $z_{1: n}$ \& means $N_{1: K}$,
how far are we tron reconstructing $\left\{x^{(1)}, \ldots, x^{(n)}\right\}$?
Goal: Minimize $L\left(z_{1: n}, N: K\right)$ with respect to $2 l: n$, Nlik
Cant do gradient descent because 2 i's are discrete re only be ore cluster or another, no "in-between"
Solutions: Alternating Minimization
(1) Start with random choice of N_{1}, \ldots, N_{k}

Alternate until convergence t when Zion's \& NikE
(2) Chose $z_{1: n}$ to minimise L given correct $N_{1: K}$
(3) Choose Nl:K to minimize L given current $21: K$

Step 1 Choose each N_{j} to be random distinct $x^{(i)}$
Step 2 Minimizing L wort. $2_{1: n}$
For each $i=1, \ldots, n$
set $z_{i}=\operatorname{argmin}\left\|x^{(i)}-N_{j}\right\|^{2}$

$$
j=1, \ldots, k
$$

Step 3 Minimizing L writ Ni:K Intuitively: Nj shoid be mean of all points where $2_{i}=j$
$\operatorname{minimize} \sum_{i=1}^{n}\left\|x^{(i)}-N_{z_{i}}\right\|^{2}$

$$
=\sum_{j=1}^{K} \sum_{i=2}\left\|x^{(i)}-N_{j}\right\|^{2}
$$

For particular index j, miniomse wat. Nj \Leftrightarrow minimize $\sum_{i=2 i^{\prime} j}\left\|x^{(i)}-N_{j}\right\|^{2}$ Tare gradient \&

$$
\nabla_{N_{j}} \sum_{i=z_{i}=j} \|\left(x^{(i)}-N_{j} \|^{2}=\sum_{i=z_{i}=j} 2\left(x^{(i)}-N_{j}\right) \cdot l-1\right)=0
$$

$$
\begin{aligned}
& \sum_{i=2_{i=j}^{-j}} x^{(i)}=\left|\left\{i: 2_{i}=-j\right\}\right| \cdot N j \\
& \text { \#oe points assigned } \\
& \text { to cluster j } \\
& N_{j}=\frac{1}{\left|\frac{1}{2}: 2_{i}=j 3\right|} \cdot \sum_{i: 2_{i}=j} X^{(i)}=\text { mean of are } x^{(i)}
\end{aligned}
$$

No guarantee of finding optimal sowton

- Algorithm ours until it firs local optimum
- Random initialization affects final result

How to choose k?
\downarrow This is a hyperparamoter
Wrong way: choose k to minimize coss on der set Why not? Larger k always moles coss lower

$$
\begin{aligned}
& \rightarrow K=2 \text { : loner loss } \\
& k=5: \text { loss goes } \\
& \text { loss }
\end{aligned}
$$

"Elbow critéroon":
Choose "elbow" = point where Cove goes from steep descent to Shallow descent

K- means uses Gucliden distance, so it assumes that Clusters are spherical
Goal: new algonth that can learn location ard shape of clusters

- Covariance

$X_{1} \otimes K_{L}$ are positively correlated \Leftrightarrow
positive covariance

negative comelation \Leftrightarrow regatre covariance

