Transformers II, Pretraining

Robin Jia

USC CSCI 467, Spring 2024
March 21, 2024

Review: Transformer at a high level

Final T x d matrix

- One transformer consists of
- Initial embeddings for each word of size d
- Let T =\#words, so initially we have a Txdmatrix
New! • Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Review: Multi-headed Attention

- Input: T vectors x_{1}, \ldots, x_{T} each of dimension d
- Apply 3 separate linear layers to each x_{t} :
- Query vectors $\mathrm{q}_{\mathrm{t}}=\mathrm{W}^{Q} * x_{t}$
- Keys vectors $\mathrm{k}_{\mathrm{t}}=\mathrm{W}^{K} * \mathrm{X}_{\mathrm{t}}$
- Value vectors $V_{t}=W v * x_{t}$
- To compute output o_{t} :
- Dot product q_{t} with each key vector k_{i}
- Apply softmax to get probabilities p_{i}
- Compute $o_{t}=\sum_{i=1}^{T} p_{i} * v_{i}$
- Have n heads with n different sets of parameters, then concatenate results
- Choose $d_{\text {attn }}=d / n$ so output is also dimension d
- Parameters W^{Q}, W^{K}, W^{V} for each head must be learned by gradient descent

Review: Initial embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
- Both attention and feedforward layers are order invariant
- Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
- Learn a different vector for each index
- Gets added to word vector at that index

Review: RNNs vs. Transformers (Encoders)

Today's Plan

- Transformers in full detail
- Pre-training
- Transformer decoders
- Vision Transformers

The Full Transformer

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
- Names? Typos?
- Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
- Common words = 1 token
- Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

The Full Transformer

Scaled dot product attention

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right]$ "
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
- Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to 0/1
- Scaling dot products down encourages more even attention at beginning

Scaled dot product attention

This is bad at beginning-
 should give all positions a chance to influence

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right]^{\prime \prime}$
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
-Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to 0/1
- Scaling dot products down encourages more even attention at beginning

The Full Transformer

Residual Connections

- Feedforward and multi-headed attention layers
- Take in T x d matrix X
- Output T x d matrix 0
- We add a "residual" connection: we actually use $X+O$ as output
- Makes it easy to copy information from input to output
- Think of 0 as how much we change the previous value
- Same idea also common in CNNs!
- Reduces vanishing gradient issues

Layer Normalization ("LayerNorm")

- LayerNorm is a layer/building block that "normalizes" a vector
- Input x : vector of size d

$$
x=[100,200,100,0]
$$

- Output y: vector of size d

$$
\mu=100
$$

- Formula: $\mu=\frac{1}{d} \sum_{i=1}^{d} x_{i}$ Mean of components of x

$$
\sigma^{2}=1 / 4 *\left(0^{2}+100^{2}+0^{2}+100^{2}\right)=5000
$$

$$
\sigma^{2}=\frac{1}{d} \sum_{i=1}^{d}\left(x_{i}-\mu\right)^{2} \quad \text { Variance of components of } \mathrm{x}
$$

Normalized $\mathrm{x}=$

$$
[0,100,0,-100] / \sqrt{5000}
$$

- Parameters Normalized x

$$
y=a \cdot \frac{x-\mu}{\sqrt{\sigma^{2}+\varepsilon}+b} \begin{aligned}
& \text { 1. } \begin{array}{l}
\text { Normalize: Subtract by mean, } \\
\text { divide by standard deviation }
\end{array} \\
& \text { 2. Rescale: Multiply by a, add } \mathrm{b}
\end{aligned}
$$

$$
=[0,1.4,0,-1.4](\text { If } \varepsilon \approx 0)
$$

Output $=[b, 1.4 a+b, b,-1.4 a+b]$

- a \& b are scalar parameters, let model learn good scale/shift
- Without these, all vectors forced to have mean=0, variance=1
- ε is hyperparameter: Some small number to prevent division by 0

LayerNorm in Transformers

- After every feedforward \& multi-headed attention layer, we also add Layer Normalization
- Input: vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$
- Compute μ and σ^{2} for each vector
- Normalize each vector
- Use the same a and b to rescale each vector
- Is applied after residual connection
- Output of each layer is LayerNorm $(x+\operatorname{Layer}(x))$
- Why? Stabilizes optimization by avoiding very large values

The Full Transformer

Training a Transformer

```
Predict
Entail/Contradict/Neutral
```



```
Feedforward
Multi-head Attention
```


Today's Plan

- Transformers in full detail
- Pre-training
- Transformer decoders
- Vision Transformers

Neural Networks and Scale

- Neural networks are very expressive, but have tons of parameters
- Very easy to overfit a small training dataset
- Traditionally, neural networks were viewed as flexible but very "sampleinefficient": they need many training examples to be good
- Computationally expensive
- Training at scale often uses GPUs

Pretraining

- Neural networks learn to extract features useful for some training task
- The more data you have, the more successful this will be
- If your training task is very general, these features may also be useful for other tasks!
- Hence: Pretraining
- First pre-train your model on one task with a lot of data
- Then use model's features for a task with less data
- Upends the conventional wisdom: You can use

Randomly initialized model

Pretrain on lots of data/compute

Pretrained

 modelAdapt to
smaller dataset

End task model

 neural networks with small datasets now, if they were pretrained appropriately!
ImageNet Features

Features learned by AlexNet trained on ImageNet

ImageNet Features

- ImageNet dataset: 14M images, 1000-way classification
- Most applications don't have this much data
- But the same features are still useful
- Using "frozen" pretrained features
- Get a (small) dataset for your task
- Generate features from ImageNettrained model on this data
- Train linear classifier (or shallow neural network) using ImageNet features

Masked Language Modeling (MLM)

- MLM: Randomly mask some words, train model to predict what's missing
- Doing this well requires understanding grammar, world knowledge, etc.
- Get training data just by grabbing any text and randomly delete words
- Thus: Crawl internet for text data
- Transformers are good fit due to scalability
- Large matrix multiplications are highly optimized on GPUs/TPUs
- Don't need lots of operations happening in series (like RNNs)
- Most famous example: BERT

Fine-tuning

Announcements

- Project midterm report due Tuesday, March 26
- HW3 released, due Tuesday, April 9
- Tomorrow's section: RNNs in pytorch
- How does an RNN decoder work?
- What do the gradients look like?

Review: RNN Decoder Language Models

- At each step, predict the next word given current hidden state
- Test time: Model chooses a next word, that gets fed back in
- Training time: Model is fed the human-written words, tries to guess next word at every step
- RNN computations must happen in series at both training and test time
- Each hidden state depends on the previous hidden state

Transformer autoregressive decoders

Keys

Queries

- How can we use Transformers to generate text?
- We will still generate words one at a time
- Problem: The Transformer (encoder) processes all words in parallel
- Word 2 is allowed to attend to words 3,4 ...
- But in a decoder, words 3,4 , ... have not been chosen yet when processing word 2 !
- Solution: Change multi-headed attention to only allow attending to past/current words

Transformer autoregressive decoders

- Test-time behavior
- At time t, compute hidden states for current token t by attending to positions 1 through t
- Each timestep only processes the newest token, attends to previously generated hidden states
- Happens in series

Transformer autoregressive decoders

- When training a decoder, it has to be "used to" only attending to past/current tokens
- Training time: Masked attention implementation trick
- Recall: Attention computes $\mathrm{Q} \times \mathrm{K}^{\top}$ (T x T matrix), then does softmax
- But if generating autoregressively, time t can only attend to times 1 through t
- Solution: Overwrite $Q \times \mathrm{K}^{\top}$ to be $-\infty$ when query index < key index
- All timesteps happen in parallel

Transformer autoregressive decoders

- When training a decoder, it has to be "used to" only attending to past/current tokens
- Training time: Masked attention implementation trick
- Recall: Attention computes $\mathrm{Q} \times \mathrm{K}^{\top}$ (T x T matrix), then does softmax
- But if generating autoregressively, time t can only attend to times 1 through t
- Solution: Overwrite $Q \times \mathrm{K}^{\top}$ to be $-\infty$ when query index < key index
- All timesteps happen in parallel

Transformer autoregressive decoders

- When training a decoder, it has to be "used to" only attending to past/current tokens
- Training time: Masked attention implementation trick
- Recall: Attention computes $\mathrm{Q} \times \mathrm{K}^{\top}$ (T x T matrix), then does softmax
- But if generating autoregressively, time t can only attend to times 1 through t
- Solution: Overwrite $Q \times \mathrm{K}^{\top}$ to be $-\infty$ when query index < key index
- All timesteps happen in parallel

Transformer autoregressive decoders

- When training a decoder, it has to be "used to" only attending to past/current tokens
- Training time: Masked attention implementation trick
- Recall: Attention computes $\mathrm{Q} \times \mathrm{K}^{\top}$ (T x T matrix), then does softmax
- But if generating autoregressively, time t can only attend to times 1 through t
- Solution: Overwrite $Q \times \mathrm{K}^{\top}$ to be $-\infty$ when query index < key index
- All timesteps happen in parallel

[BEGIN]	1.0	$-\infty$	$-\infty$	$-\infty$
John	. 001	. 999	$-\infty$	$-\infty$
kicked	. 001	. 356	. 643	$-\infty$
the	. 030	. 007	. 591	. 372

[BEGIN] John kicked the
Keys

What about ChatGPT???

- ChatGPT appears to be a fine-tuned language model
- Pretrained on autoregressive language modeling
- Then fine-tuned with a method called RLHF (reinforcement learning from human feedback)
- We'll return to this when we talk about reinforcement learning!

Today's Plan

- Transformers in full detail
- Dre-training
- Transformer decoders
- Vision Transformers

Vision Transformers

- Transformers paper came out in 2017
- By 2020, they were widely used in NLP
- Computer vision researchers: What if they're also good for images?

Vision Transformer

- Break images into square patches \approx tokens
- Apply a (learned) linear projection to each patch
- Add a "CLS" token
- Add positional embedding for each patch "index"
- Feed to Transformer
- Use final layer CLS representation to make prediction

Break image dimensional vector; apply a linear into 16×16 patches
layer \& add positional embeddings for each patch index

CNNs vs. Vision Transformers

CNN

- Each neuron in 1 layer has a limited receptive field
- Strong "inductive bias": Model has to look locally first, globally later

Vision Transformer

- Each hidden state can access information about a faraway part of image via attention
- Weaker "inductive bias"

Conclusion: Transformers

- "Attention is all you need"
- Get rid of recurrent connections-all "communication" between words in sequence is handled by attention
- Have multiple attention "heads" to learn different types of relationships between words
- Each head has its own parameters, which enable them to learn different things
- Plus lots of additional components to make it fit together
- Most famous modern language models (e.g., ChatGPT) are Transformers!
- Pretraining
- First train on large labeled or unlabeled datasets
- Features learned are useful for other tasks with less data
- Transformers can even be used for images

