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Review: Transformer at a high level

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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+ .5 + .3 + .01= .19

Review: Multi-headed Attention
• Input: T vectors x1, …, xT each of dimension d

• Apply 3 separate linear layers to each xt:
• Query vectors qt = WQ * xt

• Keys vectors kt = WK * xt

• Value vectors vt = WV * xt

• To compute output ot:
• Dot product qt with each key vector ki

• Apply softmax to get probabilities pi

• Compute 𝑜𝑡 = σ𝑖=1
𝑇 𝑝𝑖 ∗  𝑣𝑖

• Have n heads with n different sets of 
parameters, then concatenate results

• Choose dattn = d/n so output is also dimension d

• Parameters WQ, WK, WV for each head must be 
learned by gradient descent
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Review: Initial embedding layer

• As before, learn a vector for each 
word in vocabulary

• Is this enough?
• Both attention and feedforward layers 

are order invariant

• Need the initial embeddings to also 
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index
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RNNs vs. Transformers (Encoders)
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RNNs Transformers

• Input = sequence
of vectors, representing 

words
• Output = sequence of 

hidden state vectors, one 
for each input word

• Process a 
sentence one word at a 

time
• Each “step” of 

computation is reading 
one more word (time 

dimension)
• Each hidden state 

encodes information 
about sentence up to the 

current word

• Process all words 
of the sentence at the 
same time (in parallel)
• Each “step” of 

computation is applying 
one more layer (depth 
dimension; more like a 

CNN)
• Each hidden state 

encodes information 
about that word in the 
context of the whole 

sentence



Today’s Plan

• Transformers in full detail

• Pre-training

• Transformer decoders

• Vision Transformers
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The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Byte Pair Encoding

• Normal word vectors have 
a problem: How to deal 
with super rare words?
• Names? Typos?

• Vocabulary can’t contain 
literally every possible word…

• Solution: Tokenize string 
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens
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Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’, 
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword 
tokens



The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1 with 
[k1, …, kT]”

• Actually, you take dot product and 
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down 

encourages more even attention at 
beginning
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≈ 

Scaled dot product attention

• Earlier I said, “Dot product q1 with 
[k1, …, kT]”

• Actually, you take dot product and 
then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large
• This makes probabilities close to 0/1
• Scaling dot products down 

encourages more even attention at 
beginning
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This is bad at beginning—
should give all positions a 
chance to influence



The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Residual Connections

• Feedforward and multi-headed 
attention layers
• Take in T x d matrix X 

• Output T x d matrix O

• We add a “residual” connection: 
we actually use X + O as output
• Makes it easy to copy information 

from input to output

• Think of O as how much we 
change the previous value

• Same idea also common in 
CNNs!
• Reduces vanishing gradient issues
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Layer Normalization (“LayerNorm”)

• LayerNorm is a layer/building block that “normalizes” a vector

• Input x: vector of size d

• Output y: vector of size d

• Formula:

• Parameters
• a & b are vector parameters, let model learn good scale/shift per dimension

• Without these, all vectors forced to have mean=0, variance=1

• ɛ is hyperparameter: Some small number to prevent division by 0
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Mean of components of x

Variance of components of x

1. Normalize: Subtract by mean, 
divide by standard deviation

2. Rescale: Elementwise multiply 
by a, add b

x = [100, 200, 100, 0]

μ = 100

σ2 = ¼ * (02 + 1002 + 02 + 1002) = 5000 

Normalized x =

[0, 100, 0, -100] / 5000  

= [0, 1.4, 0, -1.4] (If ɛ ≈ 0)

Output = [b1, 
1.4a2+b2, 

b3, 
-1.4a4+b4]

Normalized x



LayerNorm in Transformers

• Add Layer Normalization layer before every feedforward & multi-
headed attention layer
• Input: vectors x1, …, xT

• Compute μ and σ2 for each vector

• Normalize each vector

• Use the same a and b to scale/shift each vector

• Output of each layer is

• Why? Stabilizes optimization by avoiding very large values
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The Full Transformer

Full Transformer also 
includes bells and 
whistles:

• Byte pair encoding

• Scaled dot product 
attention

• Residual connections 
between layers

• LayerNorm
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Training a Transformer

• Example task: Natural Language Inference
• Input: 2 sentences, A and B
• Output: 3-way classification: A entails B, A contradicts 

B, neither
• Performing this task well requires understanding 

meaning of sentences + logical relationships

• Input to Transformer: Concatenate special “CLS” 
token and 2 sentences together

• Output: Use CLS token’s final representation to 
predict

• Train on labeled data, learn to make good 
predictions
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Today’s Plan

• Transformers in full detail

• Pre-training

• Transformer decoders

• Vision Transformers
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Neural Networks and Scale

• Neural networks are very expressive, but 
have tons of parameters
• Very easy to overfit a small training dataset

• Traditionally, neural networks were 
viewed as flexible but very “sample-
inefficient”: they need many training 
examples to be good
• Computationally expensive

• Training at scale often uses GPUs
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Pretraining

• Neural networks learn to extract features 
useful for some training task
• The more data you have, the more successful this 

will be

• If your training task is very general, these 
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of 

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use 
neural networks with small datasets now, if they 
were pretrained appropriately!
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Randomly 
initialized model

Pretrain on lots 
of data/compute

Pretrained
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Adapt to 
smaller dataset

End task
model



ImageNet Features

Features learned by AlexNet trained on ImageNet
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Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



ImageNet Features
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• ImageNet dataset: 14M images, 
1000-way classification

• Most applications don’t have this 
much data

• But the same features are still 
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow 

neural network) using ImageNet 
features



Masked Language Modeling (MLM)
• MLM: Randomly mask some words, train 

model to predict what’s missing
• Doing this well requires understanding 

grammar, world knowledge, etc.
• Get training data just by grabbing any text 

and randomly delete words
• Thus: Crawl internet for text data

• Transformers are good fit due to 
scalability
• Large matrix multiplications are highly 

optimized on GPUs/TPUs
• Don’t need lots of operations happening in 

series (like RNNs)

• Most famous example: BERT
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Fine-tuning

• Initialize parameters with BERT

• Add parameters that take in the output at 
the [CLS] position and make prediction

• Keep training all parameters (“fine-tune”) on 
the new task

• Point: BERT provides very good initialization 
for SGD
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Announcements

• Project proposal grades just released
• My mistake for releasing so late, they were graded earlier but I forgot to 

click the button…

• Project midterm report deadline extended to Friday, April 4

• HW3 released, due Tuesday, April 15

• Tomorrow’s section: RNNs/Transformers in pytorch
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Review: RNN Decoder Language Models

• At each step, predict the next word given current hidden state
• Test time: Model chooses a next word, that gets fed back in
• Training time: Model is fed the human-written words, tries to guess next 

word at every step
• RNN computations must happen in series at both training and test time

• Each hidden state depends on the previous hidden state
26
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Transformer autoregressive decoders

• How can we use Transformers to generate 
text?

• We will still generate words one at a time

• Problem: The Transformer (encoder) 
processes all words in parallel
• Word 2 is allowed to attend to words 3, 4…
• But in a decoder, words 3, 4, … have not been 

chosen yet when processing word 2!

• Solution: Use a variant of multi-headed 
attention that only allows attending to 
past/current words
• Often referred to as “causal masking”: Don’t 

allow looking into the future
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Transformer autoregressive decoders

• Test-time behavior
• At time t, compute hidden states for current token t 

by attending to positions 1 through t
• Each timestep only processes the newest token, 

attends to previously generated hidden states
• Happens in series
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Transformer autoregressive decoders

• When training a decoder, it has to 
be “used to” only attending to 
past/current tokens

• Training time: Masked attention 
implementation trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax
• But if generating autoregressively, 

time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Transformer autoregressive decoders

• When training a decoder, it has to 
be “used to” only attending to 
past/current tokens

• Training time: Masked attention 
implementation trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax
• But if generating autoregressively, 

time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Transformer autoregressive decoders

• When training a decoder, it has to 
be “used to” only attending to 
past/current tokens

• Training time: Masked attention 
implementation trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax
• But if generating autoregressively, 

time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Transformer autoregressive decoders

• When training a decoder, it has to 
be “used to” only attending to 
past/current tokens

• Training time: Masked attention 
implementation trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax
• But if generating autoregressively, 

time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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What about ChatGPT???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling 

• Then fine-tuned with a method called RLHF (reinforcement learning from 
human feedback)

• We’ll return to this when we talk about reinforcement learning!
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Today’s Plan

• Transformers in full detail

• Pre-training

• Transformer decoders

• Vision Transformers
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Vision Transformers

• Transformers paper came out in 2017

• By 2020, they were widely used in NLP

• Computer vision researchers: What if they’re also good for images?
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Vision Transformer
• Break images into 

square patches ≈ tokens

• Apply a (learned) linear 
projection to each patch

• Add a “CLS” token

• Add positional 
embedding for each 
patch “index”

• Feed to Transformer

• Use final layer CLS 
representation to make 
prediction
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Break image 
into 16x16 
patches

Each patch is a 16x16x3 = 786 
dimensional vector; apply a linear 
layer & add positional embeddings 

for each patch index
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CNNs vs. Vision Transformers

CNN

• Each neuron in 1 layer has a limited 
receptive field

• Strong “inductive bias”: Model has to 
look locally first, globally later

Vision Transformer

• Each hidden state can access 
information about a faraway part of 
image via attention

• Weaker “inductive bias”
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Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections—all “communication” between words in 

sequence is handled by attention

• Have multiple attention “heads” to learn different types of relationships between 
words
• Each head has its own parameters, which enable them to learn different things

• Plus lots of additional components to make it fit together

• Most famous modern language models (e.g., ChatGPT) are Transformers!

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data

• Transformers can even be used for images
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