Transformers 11,
Pretraining
Robin Jia

USC C5CI 467, Spring 2025
March 27, 2025

Review: Transformer at a high level

o -2 5 g TnelTxdma * One transformer consists of
1 * Initial embeddings for each
Feedforward word of size d
« Let T =#words, so initially we
Multi-head Attention have a T x d matrix
Feedforward New! \A:Iternating layers of
Multi-head Attention « “Multi-headed” attention layer

» Feedforward layer

U, U ug |uj Initial T x d matrix Earliar Both take in T x d matrix and
amiliar— gutput a new T x d matrix
| Embedding » Plus some bells and whistles...

John kicked the ball #words=T=4

Review: Multi-headed Attention

Values

— / \ T

V3

“4

0, Vi V)

T 2 1.5
k, Ky Ks
of d, ds
X X, X4

d4

Vg

Dot products for X

Keys T x d matrix

Queries T x d matrix

Input: T vectors x,, ..., x; each of dimension d

Apply 3 separate linear layers to each x;:
 Query vectors g, = WQ * x,
« Keys vectors k, = WK * x,
« Value vectors v, = WY * x,

To compute output o;:
» Dot product g, with each key vector k;
« Apply softmax to get probabilities

- Computeo, =Y1_, v * v;

Have n heads with n different sets of
parameters, then concatenate results

» Choose d,;, = d/n so output is also dimension d

Parameters W<, WX, WY for each head must be
learned by gradient descent

Review: Initial embedding layer

* As before, learn a vector for each

word in vocabulary positional
oF P2 Ps3 Py embeddings
. I ?
Is this enough” N N . 1+ sum
 Both attention and feedforward layers
are order invariant Whohn ~ Wiicked Wihe VE' word vectors

» Need the initial embeddings to also 1

encode order of words!
John kicked the Dball

» Solution: Positional embeddings
e Learn a different vector for each index
* Gets added to word vector at that index

RNN s vs. Transformers (Encoders)

Transformers

* Process all words
of the sentence at the
same time (in parallel)

« Each “step” of
computation is applying
one more layer (depth
dimension; more like a
CNN)

« Each hidden state

encodes information

about that word in the
context of the whole
sentence

 Process a
sentence one word at a
time

« Each “step” of
computation is reading
one more word (time
dimension)

« Each hidden state
encodes information
about sentence up to the
current word

* Input = sequence
of vectors, representing
words
« Output = sequence of
hidden state vectors, one
for each input word

Today’s Plan

* Transformers in full detail
 Pre-training

« Transformer decoders

* Vision Transformers

The Full Transformer

e, e, e |e/ Final T xdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —_ ___Addresidual - Scaled dot product
- Multi-head Attention connections + attention
Scale dot —— LayerNorm . .
f;‘ dictz Feedforward | — * Residual connections
g <~ = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

Byte Pair Encoding

* Normal word vectors have
a problem: How to deal
with super rare words?

« Names? Typos?

« Vocabulary can't contain
literally every possible word...

e Solution: Tokenize String Ar' 'ag’,"orn’, “told’, “Fro', '.dO', 12 subword
into “subword tokens” “to’ “mind’, ‘L’ ‘oth’ 'lor’ 'ien’ tokens
« Common words = 1 token
« Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

The Full Transformer

e, e, e |e/ Final T xdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —— ___Addresidual - Scaled dot product
- Multi-head Attention connections + attention
"
Scale dot — LayerNorm . .
e Feedforward | — * Residual connections
P <~ = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

Scaled dot product attention

 Earlier | s"aid, “Dot product g, with
[k, ..., Kol

« Actually, you take dot product and

then divide by /d ¢n

0, = . 19|V + .5 Vg + 3 |Vg+ .01|Vy4

19 .5 .3 .01 Probabilities for x,
* Why?
1 2 1.5 -1 Dot products for x; - If d large, dot product between
random vectors will be large
K, K Kg k41 Keys T x d matrix « This makes probabilities close to 0/1
%*— > « Scaling dot products down
encourages more even attention at
op d, d; d4 Queries T x d matrix beginning

10

Scaled dot product attention

This is bad at beginning— - Earlier | said, “Dot product g, with
should give all positions a [k, ..., kq]”
0, = |V :
1 = [[3 chancetoinfluence « Actually, you take dot product and
then divide by ,/d
=0 ~1 ~0 =0 Probabilities for x, YV @attn
* Why?
100 200 150 -100 Dot products for x, - If d large, dot product between
random vectors will be large
K, K Kg k41 Keys T x d matrix « This makes probabilities close to 0/1
J%*— > Scaling dot products down
encourages more even attention at
d; d, d3 d4 Queries T x d matrix beginning

11

The Full Transformer

e, e, e, |e, Final Txdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. —_ ___Addresidual - Scaled dot product
- Multi-head Attention connections + attention
Scale dot —— LayerNorm . .
f;‘ dict‘; Feedforward | — * Residual connections
g <~ = between layers
Multi-head Attention - LayerNorm
U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

12

Residual Connections

« Feedforward and multi-headed
attention layers
« Takein T x d matrix X
e Output T x d matrix O

« We add a “residual” connection:
we actually use X + O as output

* Makes it easy to copy information
from input to output

« Think of O as how much we
change the previous value

« Same idea also common in
CNNs!

* Reduces vanishing gradient issues

04+

Output w/ residual
O2+[Xy [O3+X3 |04+X4 Ty d matrix

0, O3 0, Output T x d matrix
1 1 1 Linear

Hidden states
h, hs hy (T X d}ggen Matrix)
1 \ 1 \ 1 Linear + RelLU
X5 X3 YX4 [InputT xdmatrix

13

Layer Normalization (“LayerNorm”)

LayerNorm is a layer/building block that “normalizes” a vector
Input x: vector of size d

Output y: vector oj size d u =100
Formula:

x =[100, 200, 100, 0]

1
= — E x; Mean of components of x
d = 02 = % * (02 + 1002 + 02 + 1002) = 5000

Normalized x =
[0,100, 0,-100] / v5000

d

1

o? = y Z(ayz — u)? Variance of components of x
1=1

T — 1. Normalize: Subtract by mean, -) ~
y=a @[\/ng]nt b divide by standard deviation [0,1.4,0,-1.4](if & ~ 0)
' 2. Rescale: Elementwise multiply Output = [b,,
« Parameters Normalized x by a, add b 1.4a.+b
« a & b are vector parameters, let model learn good scale/shift per dimension bi, Z
« Without these, all vectors forced to have mean=0, variance=1 -1 .4a4+b4]

€ is hyperparameter. Some small number to prevent division by 0

14

LayerNorm in Transformers

« Add Layer Normalization layer before every feedforward & multi-
headed attention layer
* Input: vectors X4, ..., X7
« Compute p and o?for each vector
* Normalize each vector
« Use the same a and b to scale/shift each vector
 Qutput of each layer is x 4 Layer(LayerNorm(x))

« Why? Stabilizes optimization by avoiding very large values

The Full Transformer

e, e, e |e/ Final T xdmatrix Full Transformer also
includes bells and
1 whistles:
Feedforward \\ Byte pair encoding
. = Addresidual » Scaled dot product
- Multi-head Attention connections + attention
Scale dot —— LayerNorm . .
fjdictz Feedforward | —— * Residual connections
g < = / between layers
Multi-head Attent,gn/ . LayerNorm

U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

16

Training a Transformer

Predict
Entail/Contradict/Neutral

1

€4

€, €3

Feedforward

Multi-head Attention

Feedforward

Multi-head Attention

U,

[CLS]

U, Us

Sam lives

Uy

n ..

Example task: Natural Language Inference
 Input: 2 sentences, A and B

« Output: 3-way classification: A entails B, A contradicts
B, neither

« Performing this task well requires understanding
meaning of sentences + logical relationships

Input to Transformer: Concatenate special “CLS”
token and 2 sentences together

Output: Use CLS token's final representation to
predict

Train on labeled data, learn to make good
predictions

[CLS] Sam lives in Los Angeles. Sam lives in California.

17

Today’s Plan

 Pre-training

18

Neural Networks and Scale

* Neural networks are very expressive, but
have tons of parameters
 Very easy to overfit a small training dataset

» Traditionally, neural networks were
viewed as flexible but very “sample-
inefficient”: they need many training
examples to be good

« Computationally expensive
 Training at scale often uses GPUs

19

Pretraining

Randomly

* Neural networks learn to extract features - Ll
initialized model

useful for some training task

« The more data you have, the more successful this l Pretrain on lots
will be of data/compute
« If your training task is very general, these Pretrained
features may also be useful for other tasks! T~
* Hence: Pretraining l Adapt to
» First pre-train your model on one task with a lot of smaller dataset

data
 Then use model’s features for a task with less data
» Upends the conventional wisdom: You can use

neural networks with small datasets now, if they
were pretrained appropriately!

20

ImageNet Features

Red ornaments/
0.6
< flowers

Features learned by AlexNet trained on ImageNet

21

ImageNet Features

» ImageNet dataset: 14M images,
1000-way classification

* Most applications don't have this

> much data
e oTEalner shlp ToTor scovter Ropard. « But the same features are still
mite container ship motor scooter ledpard f I
black widow lifeboat go-kart F_’ Jaguar usertu
cockroach amphibian moped cheetah . “ ” .
N pae— o I « Using “frozen” pretrained features
I . Get a (small) dataset for your task

» Generate features from ImageNet-
trained model on this data

« Train linear classifier (or shallow
neural network) using ImageNet

. SN o . features
cherry adagascar cat
vertible agaric dalmatian sq I monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man’'s-fingers I currant howler monkey

22

Masked Language Modeling (MLM)

ioked Probably a verb « MLM: Randomly mask some words, train
ICKEd« Something a person model to predict what's missing
1 can do to a ball - Doing this well requires understanding
grammar, world knowledge, etc.
e, e, €3 e, Get training data just by grabbing any text
and randomly delete words
Feedforward « Thus: Crawl internet for text data
, , » Transformers are good fit due to
Multi-head Attention scalability
« Large matrix multiplications are highly
Feedforward optimized on GPUs/TPUs
Multi-head Attention . ggr?gsn(?i?(g ELSN%]C) operations happening in

* Most famous example: BERT
U U, ug |u,

John [MASK] the ball

23

Fine-tuning

Make
Pred‘f’“"” » Initialize parameters with BERT
« Add parameters that take in the output at
€ € = the [CLS] position and make prediction

Feedforward « Keep training all parameters (“fine-tune”) on

Multi-head Attention the new task
Feedforward » Point: BERT provides very good initialization
, _ for SGD

Multi-head Attention

U, u, Ug |U,

[CLS] Sam lives in..

24

Announcements

 Project proposal grades just released

« My mistake for releasing so late, they were graded earlier but | forgot to
click the button...

 Project midterm report deadline extended to Friday, April 4
« HW3 released, due Tuesday, April 15
* Tomorrow's section: RNNs/Transformers in pytorch

Review: RNN Decoder Language Models

To be or [END] Training outputs

T T T T

hy — h,| —— hj — h ——> ——h;

T T T T

[BEGIN] To be question Training inputs

At each step, predict the next word given current hidden state

» Test time: Model chooses a next word, that gets fed back in

 Training time: Model is fed the human-written words, tries to guess next
word at every step

 RNN computations must happen in series at both training and test time

« Each hidden state depends on the previous hidden state
26

Transformer autoregressive decoders

Values

—/ \

0, v Vo + .3 |Vg
1 2 1.5 -1
K, K Kg .Eﬂ
d; ds ds3 d4
X, X, Xs X4

Vg

Keys

Queries

« How can we use Transformers to generate
text?

« We will still generate words one at a time

 Problem: The Transformer ﬁencoder)
processes all words in parallel
« Word 2 is allowed to attend to words 3, 4...
« But in a decoder, words 3, 4, ... have not been
chosen yet when processing word 2!

 Solution: Use a variant of multi-headed
attention that only allows attending to
past/current words

« Often referred to as “causal masking”: Don't
allow looking into the future

27

Transformer autoregressive decoders

John kicked the ban ° Testtime behavior

At time t, compute hidden states for current token t
1 1 I 1 by attending to positions 1 through t

« Each timestep only processes the newest token,

© ©2 °3 |°4 attends to previously generated hidden states
Feedforward * Happens in series
Multi-head Attention 0 [BEGIN]
" - 2 John
Feedforwar
é":; kicked
Multi-head Attention the
U, U, Us Uy [BEGIN] John kicked the

[BEGIN] John kicked the Keys

28

Transformer autoregressive decoders

* When training a decoder, it has to seon [10] 2 | 6 | 3
be “used to” only attending to %
past/current tokens e om0 7)2 | A
- Training time: Masked attention S Kcked) 3 | 4 | 5 | -8
implementation trick the | 2 1 7 6
* Recall: Attention computes Q x KT (T x .
T matrix), then does softmax [BEGIN] John kicked the
 But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

29

Transformer autoregressive decoders

* When training a decoder, it has to seon [10 2 | 6 | 3
be “used to” only attending to %
past/current tokens e om0 7 2] A
- Training time: Masked attention S Kcked) 3 | 4 | 5 | -8
implementation trick the | 2 1 7 6
* Recall: Attention computes Q x KT (T x _
T matrix), then does softmax [BEGIN] John kicked the
 But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

30

Transformer autoregressive decoders

* When training a decoder, it has to BEGINI [10 | —00 | ~00 | ~o0
be “used to” only attending to %
past/current tokens e o) 0 | 7 |70 | T
- Training time: Masked attention S Kcked] 3 | 4 | 5 | -0
implementation trick the | 2 1 7 6
* Recall: Attention computes Q x KT (T x _
T matrix), then does softmax [BEGIN] John kicked the
 But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

31

Transformer autoregressive decoders

« When training a decoder, it has to
be “used to” only attending to
past/current tokens

* Training time: Masked attention
implementation trick

« Recall: Attention computes Q x KT (T x
T matrix), then does softmax

 But if generating autoregressively,
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

Queries

[BEGIN]
John
kicked
the

1.0 0 0 0
.0017 | .999 0 0
.007 | .356 | .643 0
.030 | .007 | .591 | .372

Keys

[BEGIN] John kicked the

What about ChatGPT???

» ChatGPT appears to be a fine-tuned language model
 Pretrained on autoregressive language modeling

 Then fine-tuned with a method called RLHF (reinforcement learning from
human feedback)

« We'll return to this when we talk about reinforcement learning!

Today’s Plan

 Vision Transformers

34

Vision Transformers

* Transformers paper came out in 2017
« By 2020, they were widely used in NLP
« Computer vision researchers: What if they're also good for images?

35

Vision Transformer

Break images into

Vision Transformer (ViT) Transformer Encoder

: A square patches = tokens
| L x * Apply a (learned) linear
%f;ﬁ \ | o projection to each patch
:] « Add a “CLS” token
| Ranm « Add positional
Transformer Encoder I embeddlng for each
| G:D: patch “index”
Pa!t“(;:)];c(ll’g?ligon qg @5 @ﬁ : Multi-Head * Feedto Transformer
« Exta learable g” : Senion - Use final layer CLS
[class] embedding k Lme \r PI’O_]CCIIOI] of Fl 1ttcncd Pdtchcs 4 i [} repres entation to make
.-. 0 en - : Norm prediction
mgu——»@HIMﬁ!ﬂWE - ‘
4 = Each patchis a 16x16x3 =786 | Embedded]
1 S

Break image dimensional vector; apply a linear
into 16x16 layer & add positional embeddings

patches for each patch index .

CNNs vs. Vision Transformers

CNN Vision Transformer
« Each neuron in 1 layer has a limited Each hidden state can access
receptive field information about a faraway part of
. Strong “inductive bias”: Model hasto ~ 'Mage via attention

look locally first, globally later « Weaker “inductive bias”

Class

Bird MLP
[éf;]rl Head \

Transformer Encoder |
Pa;d,hggqtgﬂ_h@@@

*E learnable
embedding Linear Projection of Flattened Patches

|
EF'Hailmmmmﬂ

INPUT CONVOLUTION + RELU POOLING

37

Conclusion: Transformers

 “Attention is all you need”

e Get rid of recurrent connections—all “communication” between words in
sequence is handled by attention

« Have multiple attention “heads” to learn different types of relationships between
words

« Each head has its own parameters, which enable them to learn different things
 Plus lots of additional components to make it fit together

« Most famous modern language models (e.g., ChatGPT) are Transformers!

* Pretraining

* First train on large labeled or unlabeled datasets
» Features learned are useful for other tasks with less data

» Transformers can even be used for images

	Default Section
	Slide 1: Transformers II, Pretraining
	Slide 2: Review: Transformer at a high level
	Slide 3: Review: Multi-headed Attention
	Slide 4: Review: Initial embedding layer
	Slide 5: RNNs vs. Transformers (Encoders)
	Slide 6: Today’s Plan
	Slide 7: The Full Transformer
	Slide 8: Byte Pair Encoding
	Slide 9: The Full Transformer
	Slide 10: Scaled dot product attention
	Slide 11: Scaled dot product attention
	Slide 12: The Full Transformer
	Slide 13: Residual Connections
	Slide 14: Layer Normalization (“LayerNorm”)
	Slide 15: LayerNorm in Transformers
	Slide 16: The Full Transformer
	Slide 17: Training a Transformer
	Slide 18: Today’s Plan
	Slide 19: Neural Networks and Scale
	Slide 20: Pretraining
	Slide 21: ImageNet Features
	Slide 22: ImageNet Features
	Slide 23: Masked Language Modeling (MLM)
	Slide 24: Fine-tuning
	Slide 25: Announcements
	Slide 26: Review: RNN Decoder Language Models
	Slide 27: Transformer autoregressive decoders
	Slide 28: Transformer autoregressive decoders
	Slide 29: Transformer autoregressive decoders
	Slide 30: Transformer autoregressive decoders
	Slide 31: Transformer autoregressive decoders
	Slide 32: Transformer autoregressive decoders
	Slide 33: What about ChatGPT???
	Slide 34: Today’s Plan
	Slide 35: Vision Transformers
	Slide 36: Vision Transformer
	Slide 37: CNNs vs. Vision Transformers
	Slide 38: Conclusion: Transformers

