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Announcements

« Midterm grades released
» Regrade requests open through this Friday, March 28

 Project midterm report due Tuesday, April 1

« Main goal: Obtain needed data & have a full pipeline that processes data, trains a model, and
gets some results

Con;qpear)e this model with some baseline (either an even simpler model or a non-learning
metho

Results may or may not be “good”—just a starting point for final model
Analyze errors and identify possible sources of improvement

Full description on course website (click on “Final Project Information”)
« If any questions/issues, reach out to your CP

« HW3 releasing soon, due April 15




Common Exam Mistakes: 2(d)i.

(d) Deqing switches from a linear regression model to a multi-layer perceptron with one hidden
layer. Given an input z € R?, this new model computes the function

fl) =c'g(Az +b) +d,

where A € R"*4 b € R", ¢ € R", and d € R are parameters. g is an activation function
and h is the size of the hidden layer.

i. (5 points) Suppose that Deqing chooses g to be the identity function g(z) = z, and
that he adds a Gaussian noise vector to the data just like in the earlier parts. This is
equivalent in expectation to applying what type of regularization to what quantity?

« Most people got 2(c): When f(x) = w'x + b, this is applying L2 regularization to w
* i.e., Trying to make the L2 norm of w small

* In this new network, we have f(x) = (cTA)x + c™b + d
« So you immediately conclude this is applying L2 regularization to cTA




Common Exam Mistakes: 3(a)

Consider the following operations that may be associated with the training of a neural network:
A. Acquire dataset
B. Apply kernel trick Irrelevant
C. Backward pass| 2. Requires forward pass to compute gradients
= D. Forward pass = 1. Has to come first
E. Group training data into batches
F. Manually derive formula for the gradient Not needed thanks to backpropagation

G. Solve normal equations |rrelevant

H. Update model parameters | 4. Parameters “move” in direction of velocity
[. Update velocity term for momentum] 3. Velocity formula depends on gradient
(a) (6 points) From the above choices, list all of the operations that must occur iif every step

of stochastic gradient descent, in the order that they must be performed. Assume we are
training a neural network using momentum.




Common Exam Mistakes: 4(d)

(d) (2 points) True or] False: | A multi-layer perceptron with two hidden layers can express
functions that cannot be approximated by any multi-layer perceptron with one hidden
layer.

« Sounds true but is false!
» Having 2 hidden layers sounds more powerful than having 1 hidden layer

« But 1 hidden layer networks are universal approximators—can approximate
any other function

* How is this possible? You might need a much wider network with 1 hidden
layer to approximate a network with 2 hidden layersould be impractical

« So in practice, deeper networks often work better




. . 1 ihear Laye
Review: Deep Learning Satborer <
» Task: Specifies the inputs & outputs % .ReLU LEVED

- Sentiment classification: Input = sentence, S Linear Layer 1
Output = positive/negative X arams:w),
 Object recognition: Input = picture, Output = o t
type of object % m hg hf hf hf“ hs
* Model: We combine building blocks that can < RNN L
transform the input to the output © : ayer
« With parameters: Linear layer, Convolutional o Params.
layer, RNN layer, Word vector layer . Word Vector Laver
* No parameters: sigmoid/tanh/RelLU, max y
pooling, addition, Params@for each w in vocab
« Training: Minimize loss of our model’s = N AN TR AN
outputs com to the true outputs by 1 | %{ é 4 >
updatingparametersXf all layers (that have nput words wy, ..., Wy

them)
Do this by gradient descent

« Backpropagation computes gradient w.r.t.
every parameter




Review: RNNs

Initial hidden  Hidden Hidden Hidden Final hidden
state h, state h; state h, state h, state h; Output
—— T \N— [\ — || —— (— [ \——

T\ L\ T) g TJ

question
Same W’'s & b for each timestep

ht — tanh (@ht—l —l—@fl)t @
« At each timestep t, run neural network that takes in 2 inputs \ ) -

(or 1 big input, by concatenation) Linear function 'of Linear function of
« Previous hidden state h, prev. hidden state  current word vector
« Vector for current word x,

 Learn linear function of both inputs, add bias, apply non-linearity

« Parameters: Recurrence params (W,, W,, b), initial hidden state h,,
word vectors




Review: Encoder vs. Decoder

Encoder model: Converts sentence to vector “encoding”

Output  First run an RNN over
Classification ? text
layer goes here . .
) Final - Each hidden state is an
hy — h, — h)| —> hg —> —||h{ | “encoding” "encoding" of the entire
Ll | of sentence sequence up to the
T T T T current timestep
To be or question « Use this as features,

train a classifier on top



Review: Encoder vs. Decoder

Decoder model: Generates words one at a time

Desired output; To be or [END]
[ P(w;) P(w, | To) P(w | To be) P(w-,, [To be..question) ]

Softmax
Regression-style
classification over
T T T Vocabulary + [END]

To be question

g —— hf —— h ——  ——




RNN s vs. Transformers (Encoders)

Transformers

 Process a
sentence one word at a
time

« Each “step” of
computation is reading
one more word (time
dimension)

« Each hidden state
encodes information
about sentence up to the
current word

* Process all words
of the sentence at the
same time (in parallel)

« Each “step” of
computation is applying
one more layer (depth

dimension; more like a

CNN)

« Each hidden state
encodes information
about that word in the

context of the whole
sentence

* Input = sequence
of vectors, representing
words
« Output = sequence of
hidden state vectors, one
for each input word
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Review: Challenges of modeling sequences

3] o = : : :
s |3, 3 %. 4 <+ Modeling relationships between
e 5o 2l5)S|2 85 .28 @
ﬁ%%ﬁﬂﬁga-aEq.—u v words
L' . .
ccord  Translation alignment
sur

la
zone

économique

europeenne
d

ete
signé
en
ao(t
1992

<end>




Review: Challenges of modeling sequences

Goes with “steak” » Modeling relationships between
words
He ate Steak Wlth kEtChUp e Translation alignment
Modifies “ate”  Syntactic dependencies

He ate steak with a fork
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Review: Challenges of modeling sequences

— » Modeling relationships between
“| voted for Nader because he was most
words
/_\ . .
aligned with my values,” she said.  Translation alignment

 Syntactic dependencies
 Coreference relationships
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Review: Attention

« Compute similarity between
hidden state and each
encoder hidden state

* E.g., dot product, if same size

« Normalize similarities to
probability distribution with
softmax

 Qutput: “Context” vector ¢ =
weighted average of encoder
states based on the
probabilities

« No new parameters (like
RelLU/max pool)

6 el +.39 1 +.01

by b, D,

f f2 fa

.39 .01
-

W/\Dot Product

b2 b1 ho h1 h2 h3

G bt

am  hungry

Normalize to probability
distribution w/ softmax
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Review: Attention as Retrieval

Go gle training a machine translation model X & @& Q

Images Videos Perspectives Python Example Online Github Shopping News

About 174,000,000 results (0.18 seconds)

Pangeanic
r’ https://blog.pangeanic.com » train-machine-translation-e... 3 ]

How to train your machine translation engine

Oct 20, 2021 — A machine translation engine is software capable of translating texts from a

source language to a target language. Applying artificial ...

How To Train Your Machine... - 1. Incorporation Of The Base... - Tips For Improving The...

é Machine Learning Mastery
https://machinelearningmastery.com : Blog

How to Develop a Neural Machine Translation System from ...

Oct 6, 2020 — Machine translation is a challenging task that traditionally involves large
statistical models developed using highly sophisticated linguistic ...

O GitHub

https://google.github.io » nmt 3

Tutorial: Neural Machine Translation - seq2seq

For more details on the theory of Sequence-to-Sequence and Machine Translation models, we
recommend the following resources: ... The training script will save ...

Neural Machine Translation... - Alternative: Generate Toy Data - Training

« Consider a search engine:

Queries: What you are
looking for

« E.g., What you type into
Google search

Keys: Summary of what
information is there

« E.g., Text from each webpage
Values: What to give the user

* E.g., The URL of each
webpage
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Review: Attention

(8) Attention Layer
* Inputs (all vectors of length d):

* Query vector g
- Key vectorsk;, ..., k;

- Value vectors v, .., vy
 Qutput (also vector of length d)

How well does the

Output vector

|

query match each key?

Attention Layer
No parameters

Dot product g with each key vector k;, to get score s,.
St = QT]ft
- Softmax to get probability distribution p,, ..., p~

Pt =

eSt

Z?: 1 e

» Return weighted average of value vectors:

T
E Pt Ut
t=1

Dominated by the values corresponding
to the “best-matching” keys
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Today: Can we use Attention for Everything?

Modeling relationships between words
» Translation alignment
» Syntactic dependencies
« Coreference relationships

Long range dependencies
» E.g., consistency of characters in a novel

Attention captures relationships &

doesn’t care about “distance,” unlike
RNNs

Let's replace RNN's with an architecture
based solely on MLP’s + attention




Today: The Transformer Architecture

e e, ed ey

Input: Sequence of words

Output: Sequence of hidden state vectors, one
per word

Same “type signature” as RNN

Motivation

* Process all words at the same time, don't do
1 explicit sequential processing

: « Let attention figure out which words are relevant
John  kicked the ball to each other

« Whereas RNN assumes sequence order is what
matters

« “Attention is all you need”

Transformer




Transformer overview

Final T x d matri .
& & €1 |54 TRV R « One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward « Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
U U, Uz  |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

#words=T =4




Transformer overview

Final T x d matri .
& & €1 |54 TRV R « One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward « Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
U U, Uz  |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

#words=T =4




Feedforward layer

04 |0
P
hy  |hy
P
Xy %,

Output T x d matrix
Linear

Hidden states
(T X d};ggen Matrix)

Linear + ReLU

Input T x d matrix

 |Input: T x d matrix
* Output: Another T x d matrix

* Apply the same MLP separately

to each d-dimensional vector
* Linear layer from d to d; 4qen
« ReLU (or other nonlinearity)
* Linear layer from d,4q4e, t0 d

 Note: No information moves
between tokens here

21



Transformer overview

Final T x d matri :
& |& €5 |84 TN T XAMAlX « One transformer consists of
I « Initial embeddings for each word
of size d
Feedforward « Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
Uy Uy U3 |ug Initial T x d matrix - Plus some bells and whistles...
1 Embedding

John  kicked the ball #words=T=4

22




Modifying Attention

) « What is a multi-headed
C|= 0 leq"3%0eg +.0T e attention layer???

« Similar to attention we've

.6 .39 .01 Normalize to probability
$ distribution w/ softmax seen, but need to make 3
T ] . changes...
Dot Product « Self-attention (no separate

encoder & decoder)

« Separate queries, keys, and

e, h
values

f—y

/ am  hungry e Multi-headed

23



Change #1: Self-Attention

 Previously: Decoder state
looks for relevant encoder
states

« Self-attention: Each encoder
state now looks for relevant
(other) encoder states

« Why? Build better

C =.6|e +.39 g, +.01 |eg

.6 .39 .01 Normalize to probability
T T 1 distribution w/ softmax

Dot Product

e; h, representation for word in
context by capturing

| am  hungry relationships to other words

24



Change #1: Self-attention

» Take x, and dot product it with all T
inputs (including itself)

» Apply softmax to convert to probability

distribution
19 5 3 .01 Probabilities forx; . Compute output o, as weighted sum of
1 2 1.5 -1 Dot products for x, inputs

X1 X5 X3 X, Input T x d matrix




Change #1: Self-attention

04

.01

Output T x d matrix

Probabilities for x;

Dot products for X,

Input T x d matrix

Take x, and dot product it with all T
inputs (including itself)

» Apply softmax to convert to probability

distribution

Compute output o, as weighted sum of
inputs

Repeat fort=2,3, .., T

Replacement for recurrence

« RNN only allows information to flow
linearly along sequence

« Now, information can flow from any index
to any other index, as determined by
attention

26



Change #2: Separate queries, keys, and values

Values
// \\ * Recall: Attention uses vectors in
three different ways

0 = 19Xy .5 Xz + .31Xg + .0TX, « As “query” for current index
« As “keys” to match with query
19 5 3 .01 Probabilities for x,; « As “values” when computing output
1 9 1.5 -1  Dotproducts forx, * ldea:Use separate vectors for each

usage
k ; ; x « What each index “looks for” different

from what it “matches with”
« What you store in output different

from what you “look for”/“match with”

X1 X5 X3 X, Input T x d matrix

27




Change #2: Separate queries, keys, and values

Values
// \\ « Apply 3 separate linear layers to each of x,,
..., X7 to get
Oq = Vi V2 V3 Va * Queries [q;, .., 9], each g, = WA * x,

 Keys [k;, ..., k{], each k, = WK * x,
 Values [v,, .., vq], each v, = WV * x,
« Note: This adds parameters WQ, WK, WV

1 2 1.5 -1 Dot products for X - Each linear layer maps from dimension d to
dimension d_,

K, K Kg k41 Keys T x d,, matrix » Dot product g, with [k, ..., kil
_t% > g * Apply softmax to get
o ep Q3 |4 Queries Txdy, matrix « Compute o, as weighted sum of [v,, .., -]

Repeatfort=2,..,T

28




Matrix form

Values

— / \ T

o= Vg V2

1 2 1.5

V3

“4

d- ds ds

 QuadraticinT

d4

Vy

Dot products for X

Keys T x d

attn

Queries T x d

matrix

attn

matrix

* All you need is fast matrix multiplication
 All indices run in parallel

Apply 3 separate linear layers to input
matrix X (T x d.,) to get

« Query matrix Q = (WQ* XT)T

« Keys K= (WK*XN)T

« Values V = (WV*XDT

* Note: This adds parameters WQ, WK, WV

« Compute Q x KT (T x T matrix)

« Each entry is dot product of one query
vector with one key vector

« Normalize each row with softmax to get

matrix of probabilities

 Output=F~xV

29



Change #3: Making it Multi-headed

* Instead of doing
attention once, have n
. N Each head outputs . ‘" "
11 112 [l 14 21| N2 23 N4 T x d/2 matrix (n=2) different “heads

Attention head #1 | | Attention head #2 » Each has its own W%, WX,
~— WV parameters that map
| ‘ to dimension d_,,, = d/n
X X, X4  |X4 Input T x d matrix  Concatenate at end to

get output of size T x d

30




Change #3: Making it Multi-headed

Concatenate e Instead of doing
attention once, have n
. N Each head outputs . ‘" "
11 2 (13 [h4 21| 22 23 24 T x d/2 matrix (n=2) different “"heads

Attention head #1 | | Attention head #2 » Each has its own WQ WX

WV parameters that map
T~ to dimension d_,., = d/n

 Concatenate at end to
get output of size T x d

« Why? Different heads
can capture different
relationships between
words

[ |

X1 X5 X3 X, Input T x d matrix

31




The Multi-headed Attention building block

(9) Multi-headed Attention Layer Output hy, ..., hy, €ach shape d

« Input: List of vectors x;, ..., X7, each of size d hy hy hy hy hy

- Equivalent to a T x d matrix I I I I I
* Output: List of vectors h,, .., h,, each of size d : :

« Equivalent to another T x d matrix Multi-headed a;ten’f(lon l/ayer
« Formula: For each head i: Parafr(r)mrs.i. ZV% 'Win' Wi

« Compute Q, K, V matrices using W,%, WK, W, L

« Compute self attention output using Q, K, V to yield ‘ ‘ ‘ I ]

T x d,, Matrix

- Finally, concatenate results for all heads X9 X X3 Xy Xg

« Parameters: Input x,, ..., X1, each shape d

« For each head i, parameter matrices W.2, WX, W.V of
size d_, x d

« (# of heads nis hyperparameter, d_, = d/n)
In pytorch: nn.MultiheadAttention()




What do attention heads learn?

She

He

Gender-specific term

Layer: 5 %

The
girl
and
the
boy
walked
home

She

Layer: 5 %

The
girl
and
the
boy
walked
home

He

The
girl
and
the
boy
walked
home

She

The
girl
and
the

walked
home

He

Layer: 5 %

Later

Alice
came
up

to
Bob

Layer: 5 %

Later

Alice
came
up

to
Bob

He

Name

Later
Alice
up
to

Bob

She

Later

Alice
came
up

to
Bob

He

 This attention head seems to go
from a pronoun to its antecedent
(who the pronoun refers to)

« Other heads may do more boring
things, like point to the
previous/next word

« In this way, can do RNN-like things as
needed

« But attention also can reach across
long ranges
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Transformer overview

€

€, €3

1

Feedforward

Multi-head Attention

Feedforward

Multi-head Attention

U,

John

U, Us

1 Embedding

kicked the

Uy

ball

Final Txdmatrix 4 One transformer consists of

* Initial embeddings for each word
of size d

» Let T =#words, so initially we have
a T x d matrix

« Alternating layers of
» “Multi-headed” attention layer
» Feedforward layer

» Both take in T x d matrix and
output a new T x d matrix

 Plus some bells and whistles...
Initial T x d matrix

#words=T =4
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Embedding layer

* As before, learn a vector for each

word in vocabulary positional
oF P2 Ps3 Py embeddings
. I ?
Is this enough” N N . 1+ sum
 Both attention and feedforward layers
are order invariant Whohn ~ Wiicked  Wihe VE' word vectors

» Need the initial embeddings to also 1

encode order of words!
John kicked the Dball

» Solution: Positional embeddings
e Learn a different vector for each index
* Gets added to word vector at that index
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Transformer overview

e, e, e |e, Final T xd matrix  How does a Transformer “work™?
- Input layer: Specify each word & its
1 position in the sequence
Feedforward  Multi-headed attention layers: For
each word, retrieve information
Multi-head Attention about related words, incorporate into
the word’s representation
Feedforward - Feedforward layers: Do additional
. _ non-linear processing of the
Multi-head Attention information we have about the each
word (independently)
U, u, U u, Initial T x d matrix
1 Embedding

John  kicked the ball #words=T=4
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Runtime comparison

f0—>f1—>f2—>f3—>f4 e RNNs

4 4 t 4 e Lj ‘
Jobt kioked  the  ball inear in sequence length |
 But all operations have to happen in
5 - el e, series
* Transformers
Feedforward

 Quadratic in sequence length (Tx T
Multi-head Attention matrices)

 But can be parallelized (big matrix
multiplication)

Feedforward

Multi-head Attention

U, Us Uy |uy

John kicked the ball

37




Transformer overview

Final T i :
& B |8 [ FnalTxdmat . One transformer consists of
1 « Initial embeddings for each word
of size d
Feedforward « Let T =#words, so initially we have

a T x d matrix

Multi-head Attention . Alternating layers of

Feedforward « “Multi-headed” attention layer
» Feedforward layer
Multi-head Attention « Both take in T x d matrix and
output a new T x d matrix
u, u, ug |uy Initial T x d matrix « Plus some bells and

, whistles...more next time
1 Embedding

John  kicked the ball #words=T=4
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Conclusion: Transformers

 “Attention is all you need”
 Get rid of recurrent connections
* Instead, all “communication” between words in sequence is handled by attention

« Have multiple attention “heads” to learn different types of relationships between
words

« Most famous modern language models (e.g., ChatGPT) are
Transformers!

* Next time; More Transformer details, Transformers as Decoders, Pre-
training

* Later: Transformers + Reinforcement Learning = ChatGPT
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