Transformers, Part I

Robin Jia

USC CSCI 467, Spring 2024
March 19, 2024

Announcements

- Midterm grades released
- Project midterm report due Tuesday, March 26
- Main goal: Obtain needed data \& have a full pipeline that processes data, trains a model, and gets some results
- Compare this model with some baseline (either an even simpler model or a non-learning method)
- Results may or may not be "good"-just a starting point for final model
- Analyze errors and identify possible sources of improvement
- Full description on course website (click on "Final Project Information")
- If any questions/issues, reach out to your CP
- HW3 releasing soon, due April 4

Common Exam Mistakes: 1(c)

(c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic centimeters. Therefore, he think that a good formula for $F W$ should involve features where 3 of the original features are multiplied together.
ii. (4 points) Describe two different ways Ryan could train a model to learn the type of formula he is looking for. Explain your answer in detail.

- Answering "Neural Network" got 1 / 2 points
- Yes, neural networks can approximate any function
- But they will never actually compute the product of 3 features
- Better answer is to directly multiply the features together

Common Exam Mistakes: 1(c)

(c) Ryan reasons that the weight should be proportional to volume, which is in units of cubic centimeters. Therefore, he think that a good formula for $F W$ should involve features where 3 of the original features are multiplied together.
ii. (4 points) Describe two different ways Ryan could train a model to learn the type of formula he is looking for. Explain your answer in detail.

- Partially correct answer: Use a kernelized method with a $\Phi(x)$ function that has certain properties
- But to run a kernel method, you have to specify the kernel function $k(x, z)$
- To use kernel trick, must show $k(x, z)$ is efficient to compute
- A kernelized method never directly uses Φ, that's why it has different efficiency properties

Common Exam Mistakes: 5(b)

(b) (5 points) Consider a linear model with parameter vector $w \in \mathbb{R}^{d}$ for binary classification. For a given training dataset, we can compute the zero-one loss as follows:

$$
L(w)=\sum_{i=1}^{n} \mathbb{I}\left[y^{(i)} w^{\top} x^{(i)} \leq 0\right] .
$$

Recall that $\mathbb{I}[\cdot]$ is the indicator function that is 1 if the input is true, and 0 if it is false. Is it possible to use gradient descent to learn w by minimizing this loss function?

- Incomplete answer: Bad because it is not differentiable everywhere
- Hinge loss is also not differentiable everywhere, but SVM works
- Real problem: This function's derivative is 0 everywhere it exists
- This means that all gradients are 0 , so gradient descent does nothing

Review: Deep Learning

- Task: Specifies the inputs \& outputs
- Sentiment classification: Input = sentence, Output = positive/negative
- Object recognition: Input = picture, Output = type of object
- Model: We combine building blocks that can transform the input to the output
- With parameters: Linear layer, Convolutional layer, RNN layer, Word vector layer
- No parameters: sigmoid/tanh/ReLU, max pooling, addition,
- Training: Minimize loss of our model's outputs compared to the true outputs by updating parameters of all layers (that have them)
- Do this by gradient descent
- Backpropagation computes gradient w.r.t. every parameter

Review: RNNs

- Learn linear function of both inputs, add bias, apply non-linearity
- Parameters: Recurrence params ($\left.W_{h}, W_{x} b\right)$, initial hidden state h_{0}, word vectors

Review: Encoder vs. Decoder

Encoder model: Converts sentence to vector "encoding"

- First run an RNN over text
- Use the final hidden state as an "encoding" of the entire sequence
- Use this as features, train a classifier on top

Review: Encoder vs. Decoder

Decoder model: Generates words one at a time

RNNs vs. Transformers (Encoders)

Review: Challenges of modeling sequences

- Modeling relationships between words
- Translation alignment

Review: Challenges of modeling sequences

Modifies "ate"

He ate steak with a fork

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies

Review: Challenges of modeling sequences

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies
- Coreference relationships

Review: Attention

- Compute similarity between decoder hidden state and each encoder hidden state
- E.g., dot product, if same size
- Normalize similarities to probability distribution with softmax
- Output: "Context" vector $c=$ weighted average of encoder states based on the probabilities
- No new parameters (like ReLU/max pool)

Review: Attention as Retrieval

Pangeanic

[^0]How To Train Your Machine... 1. Incorporation Of The Base... \cdot Tips For Improving The..Machine Learning Mastery
https://machinelearningmastery.com $>$ Blog
How to Develop a Neural Machine Translation System from
Oct 6,2020 - Machine translation is a challenging task that traditionally involves large statistical models developed using highly sophisticated linguistic .

($)$GitHub https://google.github.io > nmt :
Tutorial: Neural Machine Translation - seq2seq
For more details on the theory of Sequence-to-Sequence and Machine Translation models, we recommend the following resources: ... The training script will save ...
Neural Machine Translation... • Alternative: Generate Toy Data • Training

- Consider a search engine:

- Queries: What you are looking for
- E.g., What you type into Google search
- Keys: Summary of what information is there
- E.g., Text from each webpage
- Values: What to give the user
- E.g., The URL of each webpage

Review: Attention

(8) Attention Layer

- Inputs (all vectors of length d):
- Query vector q
- Key vectors k_{1}, \ldots, k_{T}
- Value vectors v_{1}, \ldots, v_{T}
- Output (also vector of length d)

How well does the query match each key?

- Dot product q with each key vector k_{t} to get score s_{t} :

$$
s_{t}=q^{\top} k_{t}
$$

- Softmax to get probability distribution p_{1}, \ldots, p_{T}

$$
p_{t}=\frac{e^{s_{t}}}{\sum_{j=1}^{T} e^{s_{j}}}
$$

- Return weighted average of value vectors:

$$
\sum_{t=1}^{T} p_{t} v_{t} \begin{aligned}
& \text { Dominated by the values corresponding } \\
& \text { to the "best-matching" keys }
\end{aligned}
$$

Today: Can we use Attention for Everything?

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies
- Coreference relationships
- Long range dependencies
- E.g., consistency of characters in a novel
- Attention captures relationships \& doesn't care about "distance," unlike RNNs
- Let's replace RNN's with an architecture based solely on MLP's + attention

Today: The Transformer Architecture

- Input: Sequence of words
- Output: Sequence of hidden state vectors, one per word
- Same "type signature" as RNN
- Motivation
- Process all words at the same time, don't do explicit sequential processing
- Let attention figure out which words are relevant to each other
- Whereas RNN assumes sequence order is what matters
- "Attention is all you need"

Transformer overview

Feedforward
Multi-head Attention

Multi-head Attention

$\mathrm{u}_{4} \quad$ Initial T x d matrix
U_{2}
Embedding
John kicked the ball \#words = T = 4

- One transformer consists of
- Initial embeddings for each word of size d
- Let T = \#words, so initially we have a Txd matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Transformer overview

Feedforward layer

Output T x d matrix

Linear

Hidden states
($\mathrm{T} \times \mathrm{d}_{\text {hidden }}$ matrix)

Linear + ReLU
Input T x d matrix

- Input: T x d matrix
- Output: Another T x d matrix
- Apply the same MLP separately to each d-dimensional vector
- Linear layer from d to $\mathrm{d}_{\text {hidden }}$
- ReLU (or other nonlinearity)
- Linear layer from $\mathrm{d}_{\text {hidden }}$ to d
- Note: No information moves between tokens here

Transformer overview

Modifying Attention

$\bar{c}=.6 \sqrt[\mathrm{e}_{1}]{ }+.39 \sqrt{\mathrm{e}_{2}}+.01 \mathrm{e}_{3}$

- What is a multi-headed attention layer???
- Similar to attention we've seen, but need to make 3 changes...
- Self-attention (no separate encoder \& decoder)
- Separate queries, keys, and values
- Multi-headed

Change \#1: Self-Attention

$\mathrm{c}=.6 \sqrt[\mathrm{e}_{1}]{ }+.39 \sqrt{\mathrm{e}_{2}}+.01 \mathrm{e}_{3}$

- Previously: Decoder state looks for relevant encoder states
- Self-attention: Each encoder state now looks for relevant (other) encoder states
- Why? Build better representation for word in context by capturing relationships to other words

Change \#1: Self-attention

$\mathrm{o}_{1}=.19 \underline{\mathrm{x}_{1}}+.5 \sqrt[\mathrm{x}_{2}]{ }+.3 \mathrm{x}_{3}+.01 \mathrm{x}_{4}$

- Take x_{1} and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o_{1} as weighted sum of inputs

Change \#1: Self-attention

o_{1}	o_{2}	o_{3}	o_{4}	Output T x d matrix
.19	.5	.3	.01	Probabilities for x_{1}
1	2	1.5	-1	Dot products for x_{1}
x_{1}	x_{2}	x_{3}	x_{4}	Input T x d matrix

- Take x_{1} and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o_{1} as weighted sum of inputs
- Repeat for $t=2,3, \ldots, T$
- Replacement for recurrence
- RNN only allows information to flow linearly along sequence
- Now, information can flow from any index to any other index, as determined by attention

Change \#2: Separate queries, keys, and values

- Recall: Attention uses vectors in three different ways
- As "query" for current index
- As "keys" to match with query
- As "values" when computing output
- Idea: Use separate vectors for each usage
- What each index "looks for" different from what it "matches with"
- What you store in output different from what you "look for"/"match with"

Change \#2: Separate queries, keys, and values

Probabilities for X_{1}
Dot products for X_{1}
Keys Tx dattn matrix

Queries Tx datnn matrix

- Apply 3 separate linear layers to each of x_{1}, ..., x_{T} to get
- Queries $\left[q_{1}, \ldots, q_{T}\right]$, each $q_{t}=W Q * x_{t}$
- Keys $\left[k_{1}, \ldots, k_{T}\right]$, each $k_{t}=W^{K} * x_{t}$
- Values $\left[v_{1}, \ldots, v_{T}\right]$, each $v_{t}=W V$ * x_{t}
- Note: This adds parameters $\mathrm{W}^{\mathrm{Q}}, \mathrm{W}^{\mathrm{K}}, \mathrm{W}^{\mathrm{V}}$
- Each linear layer maps from dimension d to dimension $d_{\text {attn }}$
- Dot product q_{1} with $\left[\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{T}}\right]$
- Apply softmax to get probability distribution
- Compute o_{1} as weighted sum of $\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{T}}\right]$
- Repeat for $\mathrm{t}=2, \ldots, \mathrm{~T}$

Matrix form

- Apply 3 separate linear layers to input matrix $X\left(T \times d_{\text {in }}\right)$ to get
- Query matrix $\mathrm{Q}=\left(\mathrm{W}^{\mathrm{Q}} \text { * } \mathrm{X}^{\top}\right)^{\top}$
- Keys $\mathrm{K}=\left(\mathrm{W}^{K} \text { * } \mathrm{X}^{\top}\right)^{\top}$
- Values $V=\left(W^{V} * X^{\top}\right)^{\top}$
- Note: This adds parameters $\mathrm{W}^{\mathrm{Q}}, \mathrm{W}^{\mathrm{K}}, \mathrm{W}^{\mathrm{V}}$
- Compute Q x K^{\top} (T x T matrix)
- Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = P x V
- Quadratic in T
- All you need is fast matrix multiplication
- All indices run in parallel

Change \#3: Making it Multi-headed

- Instead of doing attention once, have n different "heads"
- Each has its own parameters maps to dimension $d_{a t t n}=d / n$
- Concatenate at end to get output of size T x d

Change \#3: Making it Multi-headed

Concatenate

$$
\kappa_{112} h_{12} a_{18} h_{14}
$$

$$
F_{21} F_{22} F_{23} F_{24}
$$

Attention head \#1 Attention head \#2
$\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4} & \text { Input T } x d \text { matrix }\end{array}$

- Instead of doing attention once, have n different "heads"
- Each has its own parameters maps to dimension $d_{a t t n}=d / n$
- Concatenate at end to get output of size T x d
- Why? Different heads can capture different relationships between words

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

- Input: List of vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$, each of size d
- Equivalent to a $\mathrm{T} \times \mathrm{d}$ matrix
- Output: List of vectors h_{1}, \ldots, h_{t}, each of size d
- Equivalent to another T x d matrix
- Formula: For each head i :
- Compute Q, K, V matrices using $\mathrm{W}_{\mathrm{i}}{ }^{\mathrm{Q}}, \mathrm{W}_{\mathrm{i}}{ }^{\mathrm{K}}, \mathrm{W}_{\mathrm{i}}{ }^{\mathrm{V}}$
- Compute self attention output using Q, K, V to yield Txd ${ }_{\text {attn }}$ matrix
- Finally, concatenate results for all heads
- Parameters:
- For each head i, parameter matrices $W_{i}{ }^{Q}, W_{i}^{K}, W_{i}^{V}$ of size $d_{\text {attn }} \times d$
- (\# of heads n is hyperparameter, $d_{a t t n}=d / n$)
- In pytorch: nn.MultiheadAttention()

Output h_{1}, \ldots, h_{T}, each shape d

Input x_{1}, \ldots, x_{T}, each shape d

What do attention heads learn?

Gender-specific term

Name

- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
- In this way, can do RNN-like things as needed
- But attention also can reach across long ranges

Transformer overview

Multi-head Attention
Feedforward
Multi-head Attention

U_{2}

Embedding
John kicked the ball \#words = T = 4

- One transformer consists of
- Initial embeddings for each word of size d
- Let T =\#words, so initially we have a T x d matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
- Both attention and feedforward layers are order invariant
- Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
- Learn a different vector for each index
- Gets added to word vector at that index

Transformer overview

Final T x d matrix

Multi-head Attention
Feedforward
Multi-head Attention

Initial T x d matrix
Embedding
John kicked the ball \#words = T = 4

- How does a Transformer "work"?
- Input layer: Specify each word \& its position in the sequence
- Multi-headed attention layers: For each word, retrieve information about related words, incorporate into the word's representation
- Feedforward layers: Do additional non-linear processing of the information we have about the each word (independently)

Runtime comparison

- RNNs
- Linear in sequence length
- But all operations have to happen in series
- Transformers
- Quadratic in sequence length (T x T matrices)
- But can be parallelized (big matrix multiplication)

Transformer overview

Multi-head Attention
Feedforward
Multi-head Attention

u_{2}

Embedding
John kicked the ball \#words = T = 4

- One transformer consists of
- Initial embeddings for each word of size d
- Let T =\#words, so initially we have a T x d matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

The Full Transformer

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
- Names? Typos?
- Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
- Common words = 1 token
- Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

The Full Transformer

Scaled dot product attention

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right]$ "
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
- Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to $0 / 1$
- Scaling dot products down encourages more even attention at beginning

Scaled dot product attention

This is bad at beginning-
 should give all positions a chance to influence

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right]^{\prime \prime}$
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
-Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to 0/1
- Scaling dot products down encourages more even attention at beginning

The Full Transformer

Residual Connections

- Feedforward and multi-headed attention layers
- Take in T x d matrix X
- Output T x d matrix 0
- We add a "residual" connection: we actually use $X+O$ as output
- Makes it easy to copy information from input to output
- Think of 0 as how much we change the previous value
- Same idea also common in CNNs!
- Reduces vanishing gradient issues

Layer Normalization ("LayerNorm")

- LayerNorm is a layer/building block that "normalizes" a vector
- Input x: vector of size d
- Output y : vector of size d

$$
x=[100,200,100,0]
$$

- Formula: $\mu=\frac{1}{d} \sum_{i=1}^{d} x_{i}$ Mean of components of x

$$
\mu=100
$$

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{d} \sum_{i=1}^{d}\left(x_{i}-\mu\right)^{2}
\end{aligned} \text { Variance of components of } \mathrm{x} \quad \sigma^{2}=1 / 4 *\left(0^{2}+100^{2}+0^{2}+100^{2}\right)=5000
$$

- Parameters Normalized x
- a \& b are scalar parameters, let model learn good scale/shift
- Without these, all vectors forced to have mean=0, variance=1

Output = [b, 1.4a+b, b, -1.4a+b]

- ε is hyperparameter: Some small number to prevent division by 0

LayerNorm in Transformers

- After every feedforward \& multi-headed attention layer, we also add Layer Normalization
- Input: vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$
- Compute μ and σ^{2} for each vector
- Normalize each vector
- Use the same a and b to rescale each vector
- Is applied after residual connection
- Output of each layer is LayerNorm $(x+\operatorname{Layer}(x))$
- Why? Stabilizes optimization by avoiding very large values

The Full Transformer

Conclusion: Transformers

- "Attention is all you need"
- Get rid of recurrent connections
- Instead, all "communication" between words in sequence is handled by attention
- Have multiple attention "heads" to learn different types of relationships between words
- Most famous modern language models (e.g., ChatGPT) are Transformers!
- Next time: Transformers as Decoders, Pre-training
- Later: Transformers + Reinforcement Learning = ChatGPT

[^0]: How to train your machine translation engine Oct 20, 2021 - A machine translation engine is software capable of translating texts from a source language to a target language. Applying artificial ..

