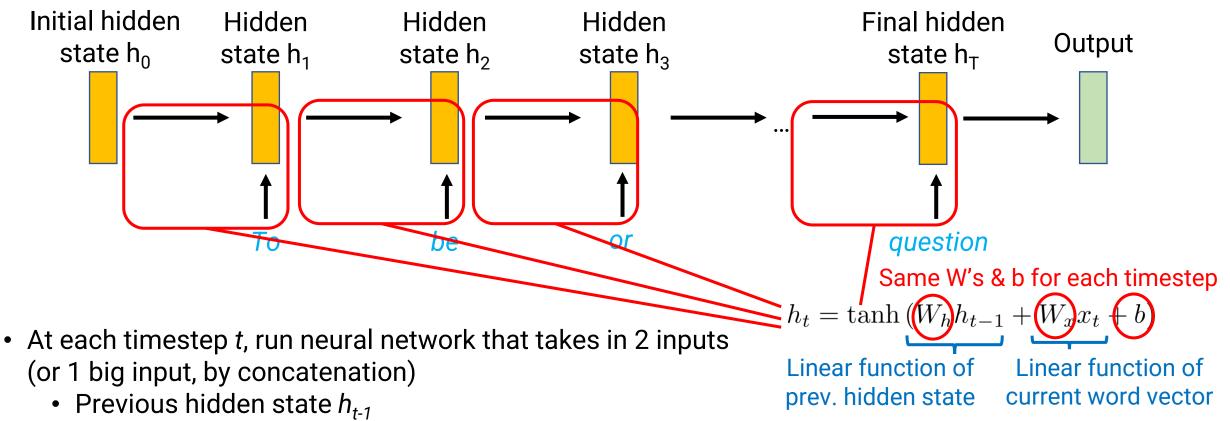
Deep Learning for Language: GRUs/LSTMs, Attention

Robin Jia USC CSCI 467, Spring 2025 March 6, 2025

Review: "Vanilla"/"Elman" RNN



- Vector for current word *x*_t
- Learn linear function of both inputs, add bias, apply non-linearity
- Parameters: Recurrence params (W_h, W_x, b), initial hidden state h₀, word vectors

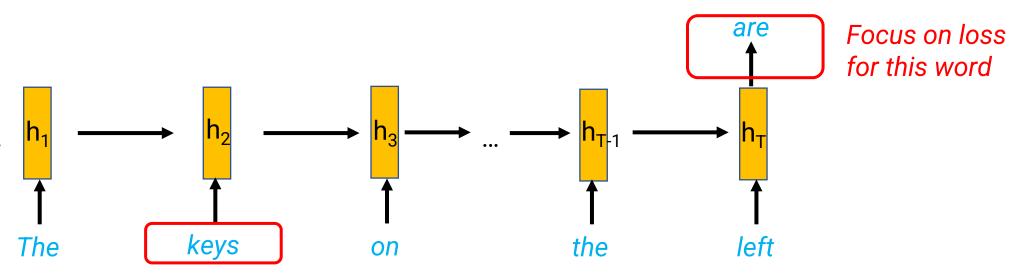
Review: Long-Range Dependencies

- Every step, you update the hidden state with the current word
- Over time, information from many words ago can easily get lost!
- This means RNNs can struggle to model long-range dependencies

The keys to the cabinet by the door on the left are (on the table)

Review: Vanishing Gradient Problem

- Gradient through "keys" word vector: $\delta Loss/\delta(h_T) * \delta(h_T)/\delta(h_{T-1}) * \delta(h_{T-1})/\delta(h_{T-2}) * ... * \delta(h_3)/\delta(h_2) * \delta(h_2)/\delta(x_2)$
 - What is each individual $\delta(h_t)/\delta(h_{t-1})$ term ?
 - Elman network: $h_t = \tanh(W_h h_{t-1} + W_x x_t + b)$, $\frac{\delta h_t}{\delta h_{t-1}} = \tanh'(W_h h_{t-1} + W_x x_t + b) \cdot W_h$
 - After t timesteps, have a factor of $(W_h)^t$ (to the t-th power)!
 - If W_h << 1, this quickly becomes 0 ("vanishes")



The same

parameter

over and over!

Ignore for now

Outline

- More on reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

Review: Avoiding Vanishing Gradients

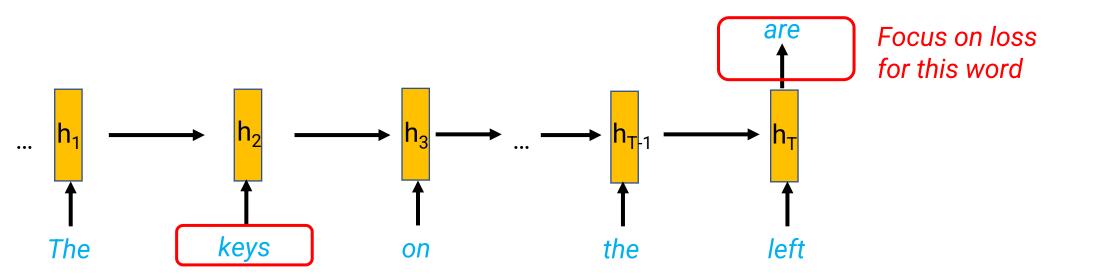
51

Where did we go wrong?

$$h_t = \tanh (W_h h_{t-1} + W_x x_t + b), \quad \frac{\delta n_t}{\delta h_{t-1}} = \tanh' (W_h h_{t-1} + W_x x_t + b) \cdot W_h$$

Multiplicative
relationship between previous
state and next state

Leads to repeated multiplication by W_h



Review: Avoiding Vanishing Gradients

• Extreme idea: A purely additive relationship

...

- Pro: No vanishing gradients
- Pro: Old hidden state carried through to all future times
- Con: May be good to "forget" irrelevant information about old states

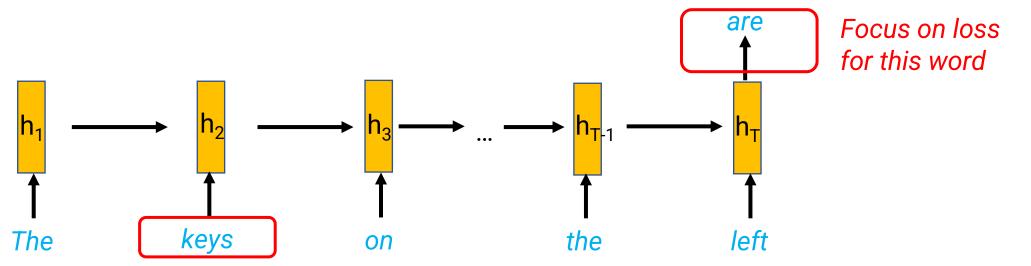
$$h_t = h_{t-1} + g(h_{t-1}, x_t),$$

relationship

$$\frac{\delta h_t}{\delta h_{t-1}} = 1 + \frac{\delta}{\delta h_{t-1}} g(h_{t-1}, x_t)$$

Gradients also add,

not multiply



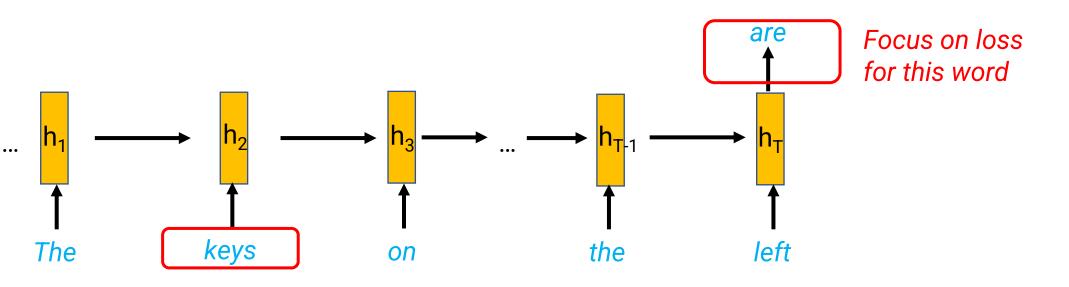
Avoiding Vanishing Gradients

- Middle-ground: **Gated** recurrence relationship
 - Additive component makes gradients add, not multiply = less vanishing gradients
 - Forget gate allows for selectively "forgetting" some neurons within hidden state
 - When forget gate is all 1's, becomes the purely additive model (no vanishing)

Elementwise multiplication

$$h_t = h_{t-1} \odot f(h_{t-1}, x_t) + g(h_{t-1}, x_t)$$

"forget gate" Additive
in [0, 1] relationship

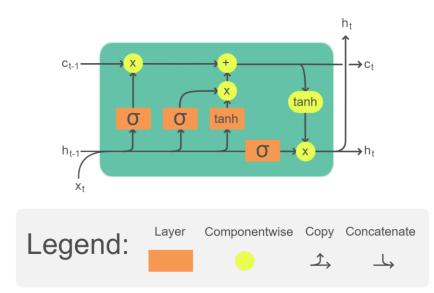


Gated Recurrent Units (GRUs)

- One type of gated RNN
 - Here z_t is the "forget gate" vector
 - If $z_{ti} = 1$:
 - Forget the *i*-th neuron
 - Allow updating its value to \tilde{h}_{ti} , computed from \mathbf{r}_{ti}
 - If $z_{ti} = 0$:
 - Don't forget the *i*-th neuron
 - Do not allow updating its value
 - Additive relationship between h_{t-1} and h_t
 - Parameters: W_z, W_n, W

Sigmoid ensures gate is between 0 and 1 Forget gate $z_t = \sigma(W_z \cdot [h_{t-1}, x_t])$ $r_t = \sigma(W_r \cdot [h_{t-1}, x_t])$ Planned update to h_t $\tilde{h}_t = \tanh(W \cdot [r_t \odot h_{t-1}, x_t])$ Actual update to h_t $h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$ Forget Add update parts of h_{t-1} to parts that were forgotten tanl

Long Short-Term Memory (LSTM)



Forget gate $f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)$ $i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$ $o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$ Planned update to $c_t \ \tilde{c}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$ Cell state $c_t = f_t \odot c_t + i_t \odot \tilde{c}_t$

Hidden state $h_t = o_t \odot \tanh(c_t)$ Add the previous cell state * forget gate

- Another, more complicated gated RNN
- Commonly used in practice
- Overall idea:
 - Split the hidden state into normal hidden state h_t and "cell" state c_t
 - Cell state uses gated recurrence with forget gate f_t
 - Hidden state is gated function of cell state
 - Also has input and output gates $i_t \& o_t$

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character

This neuron seems to detect whether we're inside a URL

t	t	p :	1	1	v	/ w	/ 14	1.	у	n	e	t	n	е	w	s		с	0	m	1		1	E	n g	j	i	s	h	-	I.	а	n	g L	ı a	g	е		w	е	b	s	i	t e		c	o f		I	s	r	a	e	1		s		I.	а	r
t	p		1	V	vv	7 W	1	b	а	С	а	h	е	t	s		С	0	m	1			-	x	g I	i	s	h		1	i	n	g	1 2	g	e	s	а	i	r	s	i	t	e	C) f		t	s	1	a	e	1	i	s		s	i	n	g
	d	:	×	r n	ı e		N	a	е	a			а	w	а	t	0	а	•		s		&	n 1	i	a	1 C	a	-	s	а	r	d	e ()	h		0	а	n		t	b	is	s a	ı r	ו f	a	n	r	e	i	f		1		а	а	t	d
m	w	- 2		Ø p	i	i	i	s	0	е	s	s	i	s		1	е	r	n		c]		(d	c e	e e	e n		е	р	е	s	a	a i	k	i		i	е	е	L	e	d	h,	i	r	t	h	r	a	0	n	s	е		,	С	0	s	е
d	r	. <	: :	a	ı h	b	-	n	p	t	w	t		x	i		g	h	1	m	a)	T	v	d r	У	Z	i		С	0	u	e	l t	s	u	:	t	h	a	-	0	0		t	ι	ı ,	s	t	u	i	f		1	v	e	p	е	r	у
s	t	р,	t	C	: 0	a	2	d	r	u	I	w	0	С	1	е	n	s	r]	p.	. 1		1	/ 2	1 0	d	,	,	е	у	t	c -	r	۱ I	d	m	-	0	i	b	u	v	s]	b	b)	i	n	n s	u	1	t	a		t	I	у	b	n

g	е	s t		n	e	W	s	p	a	р	е	r		•	•	[[Ye	d	i	o	t	h		A	n r	0	n	0	t	h []]	٠			•	•		He	b	r	е	w	-	1	a	n	g	ua	a g	e		р	е	r	i	0	d
е		t	a	a a	W	I S	р	a	p	e	r	s	0	•	[]	T	e I		t			i	(f	e a	ı n	e	m	t	i		1		*		•		e r	r	е	W	s	1	е	n	g	u	a	g e	:	a	r	0	s	0	d	
i	r	S	5 0	0 0	e			е	n	а			i	Т	Т	h	A	o a	ı i	n	n	h		S	r I	nι	1 W	1		е	У		s				[]		r	ı e	i	a	1	s	i	w	d	d	e	h	s	0	I	r	i	f	r	:
u	s		5	s e	t	1	g	0	r		s		a	s	a	t	C	a r	e	е	g	•	а	С	1	i	s	z]	i	e	:	:	,	#	:	T .	A	a a	aa	a	t		В	а	s	e	e	i I	0	'	i	a	n	f	v	I	
	-		t	u	a	e	V	r	t	i	d	,	t	В	A	m	S	JS	y	u	t]]	A	s	a c	i	g	s]]				:	s	M	B	o I	0	u	s	:	Т	0	u	a	-	n :	d		w	0	a		р	n	u
а	,	d,	i	i	u	i	t	i	С	р]	(1	S	v	H	/ t	u	s	u	i	е	D	n	o e	g	a	n	0		,]	:	{		C	C	u i	b	0	h	е	С	у	b	k	s	1 5	s :	r	-	е	р	с	n	t	5

i	с	a	T	s	:	•	•	•		*	'		•	1	[G	I	0	b	e	s	1	1	•			[h	t	t	р	: /	1	v	vv	/ w	ι.	g	L	o	b	е	s		с	0	. 1	1	1]		b	u	s	i	n	e s	ss		d	а
С	а	Ľ		•	1	1	*		*	1				[Т	а	а	b	а			1	٠	٠		([t	t	p			1	w v	v v	ί.	b	u	0	b	а	I		С	0	m	u I	n /	s	A		-	у	t	i	n	e	5 5		а	е	t
s		t	1	•									[h	A	е	0	V	e	1	t			s		а	h	a		d		:)	X	g e).	W	a	0	i	r		r	t	0	a		e I		i	Т		&	a	i		e	g		е	0	0	У
t	t	•	•					1	8	k [8	8	&	m	С	0	е	r	0	n	е	r.	:	:	,	i	•	0	d	w		, :	1	n i	i	i	s	а	а	u	е		е	n	i	1	1 0	n I	С	С		(е	f	t	g	i	r		i	i	u
а	'	n	:	,	C	:	8	:	#	ŧ *	:		a	f	D	r	u	s	u]	I		,			0	m	е	L		p	< ,	(d r	n a	;	d	е	u	0	0	t	1	i	h	n	c s	s i	f	S	,		u	r	h	0	s	t	,	t	u	n
n	k		i		<	:]	:	8	1	1	s	5		Т	G	u	i	t	r	s	i	,			:	b	а	С	m	r	-	x t	: F	p c	b	-	g	r	е	s	i	s	I	е	r	1	n a	a f	a	D]	L	0	s	р	t	a	d,	i	f	r	m

i	I	у		*	•	•	[[H	a	a	r	e			z	1	H	a	•	A	r	e	t	z]]	•			[h 1		1	:	1	1	v	/ w	w		h	a	а	r	е	t	z		c	0		i	1	1]		R	е	L	a	t	i	v
1	у		*		•	[[Т	е	r	r	d	n	1			F	е	r	а	n	t	а	h]	1	•	1		([t I) :	1	1	v	/ W	/ w	e	b	0	n	m	n d	s	t		С	0	п	n u	n	1	s		-	е	s	а	t	е	0	i
r	е			1		•	h	A	i	1	n	n	t	t	t	е	Н	а	1	s	r	С	n	0	1	'		s		a	h	a	C	ł		x	n	е		w	a	а	m	n r	t	d	h	е	0	h		0	1		С		&	0	р	i	n	i	v	е
k	i		:	*	s	С	0	S	а	n	T	t		ł	h	i	Т	i	m	•	I.	i]	е				:	,	i	m	c	/ k	N -	2	•	p	h	i	i	s	е	r	d	i	t		i	n	a	1	С	n	n f	i		(а	f	L	С	а	n	а
d	s	-	!	[t	В	Т	С	0	m	m	g	C	1]]	W	0	n			а		а	e	,	:			b	a	e r	r		<	t	a	i	b	-	d	u	1	С	n	n	С	1	a	r	n	e	s	i		1	I	i	С	е	у	s	t	0
n	d	S	#	&	2	G	1	D	u	v	С	С	S	6 6	a	0	S	u	С	I	t	е	1]	z	1	,		:	0		n o	n t]	,	2	e	0	a	2	n	i	v	f	s	r	0	0	е	i	u	n	a	1	a)		u	٧	V	r	0		

What do LSTMs learn?

- Here: a characterlevel LSTM (not word-level)
- Blue/Green: Low/high values of 1 neuron
- Below: Top-5 predictions for next character
- This neuron fires only inside a Markdown [[link]] (so it knows when to close the square brackets?)

1			[[.	J	e I	r i	u s	a	I	e	m	۱	R	е	p	0	r	t	1	1		•		[h	t	t p):	1	T	w	w	w.	j	r	e	p		C	0	m	1		L	e	f	t	-	0	f	- c	e	n	t	е	r	1	EI
*	ľ	[ł	n T	T	o i	a	u	s a	1		n	1	а	0	g	u	r	t	1	1	•	1		(h	t	t	p :		1	w	w	w		0 5	s i	n	i	0	0	m	1		-	i	a	t		а	f		t e	n	t	е	r		(n (
		'	[C	a	s :	s I	n e	n	e		1	В	e	a	0	n	d	s			s		a	[a		d	:	x	n	е		w	aa	aa	a	0	С	a			s	ξ	k a	t	0	-	4	n	f	h h	1	s	u	m	-	0	u
	5	5	n	n I	F	u I	r I	n I	s		i	a	e	t	a	1	1	s	a		'	:	:	,	i	•	с	d	w -	2	? t	р	i	i	i	s (o e	g		e	r	1		a		0	s	e	s	w	r	- 1	c i	d	d	r	s		[m t
: '	:	H		1 1	D	e I	n	e I	o i	u	t	n	1	C	; i	p	r	e		е	1	,			b	1	e	m	r.	9):	a	h	b	- 1	n p	u	m	ı u	g	h	n	m	p) 1	Ге	i	r	е	t	u	:	e c	s	e	0	d	s	al	0
# '	Г	8 T	f		s i	,	w I	r I	o 🗌	e	1	1	a	1	u	V	е	I	r	u	,	s		:	-	m	p	r I	ts	<									h		I.	r		C .	. /	۹ u	g	1	,	1	р	,		r				:		a

g	I	i	s	ł	n		[[W	e		•	k	L	у		n	•		w	s	р	a	р	e	r]	1		*		1			[Y	N	e	t	N	е	w	s]	1			T	1	h	ı t	t	F) :	1			w	w	w		y	n	e	t	n	e	w	IS		c
1	i	s	h			С	1	С	а	a	I	(1	у]	С	а	٧	N	s	р	а	р	e	r	1	1		*		1	[1	n T	Т	а	A			а	t			1	•	1		(h	t	t	p):				w	w	w		b	а	С	а	h	e	t	s		С	C
i	a	С	i	-	•	L	h	S	0	i	ł)		i		s	е	0	2]	e	n	р]	s						1	1		С	0		*	w	е	s	s]			s		a	[a	i I	d	1	:)	K I	n	e		w	а	е	а			a	w	a	t	0	a
е	e	n	а	,		p	С	С	i	e	t		n	е	d	I	0	>	(]		g	i	С	i	I	1		s	'	[S	4	1	n I	F	e	S	a	h	0	n]	t	1	:	:	,	i	n	n o	r	n v	v -	2	2	Ŷ	p	i	i	i	s	0	е	s	s	i	s		1	e	r
s	y	z				s	f	p	e	n	1	۱		a	ľ	r	u	e	ə		1	r	r	а				'	#	*	:		(D	u	F	r	е	i	u	е	р		,		:	b	1	е	• •	l r			< :		a	h	b	- 1	n	р	t	w	t		x	i		g	h
а		d	р	e	9	a	m	A	r	b	0	ł	e	0	r	p	i	t		e	e	1	d	t	s	- 7	1		Т	{	[E	3 8	a	A	v	Т	р	0	S	w	а	0	,				0	a	c	: 5	t	p),	t	t (C	0	a	2	d	r	u	I	W	0	С	1	e	n	s

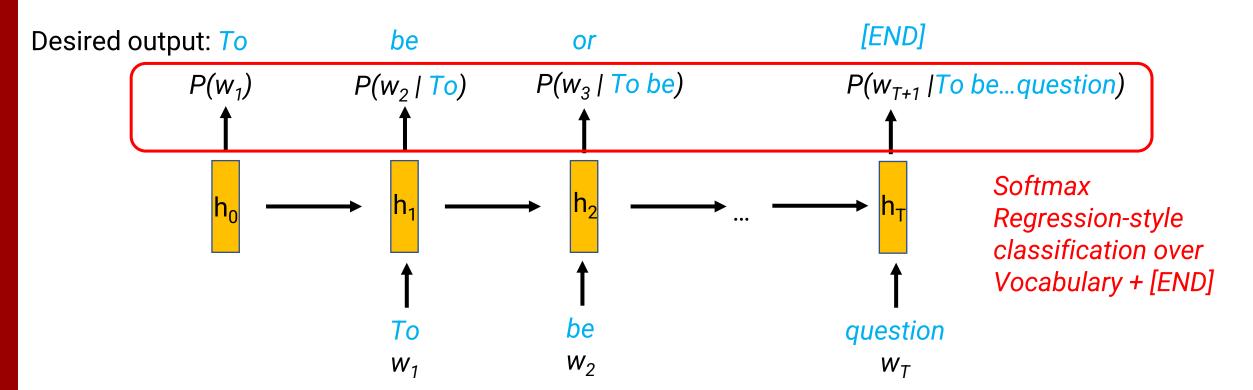
0	m	/]]		E	n	ç	1	i		5	h	-	L	a	n	g	,	u	a	g	e		w	е	b	s	i	t	e		0	f		I	s	r	a	e	I	٠	s		I	a	r	g	e		s t		r	n e	• v	N S	F	a	ı p	0	e r		•		1	1		Y	e	d
m	Ľ			-	x	g	1	i	1	; 1	'n		L	i	n	g	L	1	a	g	е	s	a	i	r	s	i	t	е		0	f		t	s	1	a	e	1	i	s		s	i	n	g	j e		1	t	a	a	a v	v s	s p) a	ı p) (e I	5	5 (b	[1	Γe	e	1	
		s		&	n	t	i	2	a	; 2	a	-	s	а	r	d	e		e I		h		0	а	n		t	b	i	s	a	n	f	a	a r	ı r	е	i	f				a	a	t	d	l i	r		5	6 0		0 6	•		e	e n	n a	a		i	1	Г 1	TH	n /	4	0	a	i
n	.	c]]	(d	С	e		ə r	1	1	e	р	е	s	a	2	a i		k	i		i	е	е	1	е	d	h	,	i	r	t	r	n r	a	0	n	s	е		,	С	0	s	е	u	s	; .		s	6	e t	1	ç	, c	r	1	5	3 .	1	as	5 2	a t	. (C (a	r	е
1	m	a)	Т	v	d	r	3	1 2	: i			с	0	u	e	C	1		s	u	:	t	h	а	-	0	0			t	u	,	S	; t	u	i	f		1	V	e	p	e	r	у	1	-			t	ι	l a	a e	e v	r	t	i	(, t	t	E	3 /	AI	n S	Sι	u	s	у
r]	р.		I	I	V	a	1	0 0	١,		,	е	у	t	C	-	I	n		d	m	-	0	i	b	u	v	s]	b	b		i	n	n s	u	I	t	a		t	1	у	b	n	n a	ι,	(d,	i	i	ι	ı i	t	i	C	; p) .]	(5	S	/	4	v	t	u

i	0	t	h			A	h	r	ο	n	O	1		h	1]														w		1					u	a				р	ė		i			d ji		С	а	1		:	•	•	•		*	•	•	[1	0	G I		o	b	е	s	1	1	1
t			i	(F	e	a	n	е	n	n t		i	I					*	٠	•]	е	r		г	е	w	s	L	е	r	1 9	3	u	a	g	e	:	a	r	0	s	C		d i		C	а	Ľ		:	•	٠	1		*	1		1	I	1	. 9	1 2	a ł	b	а			1	1	1
n	n	h			S	r	m	u	w]		(•	у			s					[•	i	r	1	e	i	а	•	s	i	v	v	1	d	e	'	h	s	0	1	r	i	f	r	• :		s		t	I	'								[h	1	N e) (2	v	e	L	t			s
е	g	'	a	(C		r	i	s	z]	i		e	E.	:	:	,	;	#		Т	A	a	a	1	a	a	t		в	a	s	; (e	i	1	0	•	i	a	n	f	V	1		1	t	t	r.	1					'	&	[8	&	n		2 0) (e r	r	0	n	е	•	:	:
u		1	1	1	A	s	a	0	i	g	s]]	,		T			:	s	M	в	0	1		0	u	s	:	Т	0	U	1 2	a .	-	n	:	d		w	0	a	ii I	F	r	ι	J	a	•	n	:	,	С	:	&	:	#	*	:	a	f	0) r	I	u s	s	u]	I		,	
s	u	i	e	1	D	n	0	e	g	-	+	-	5			,]	:		{		С	С	u	i	1	b	0	h	е	C	y	b		(s	I	s	:	r	-	e	p	c	r	n t		s I	n	k		i		<	1	:	&	1	1	s		Т	0	βL	ıi	t	t	r	s	i	,		

Outline

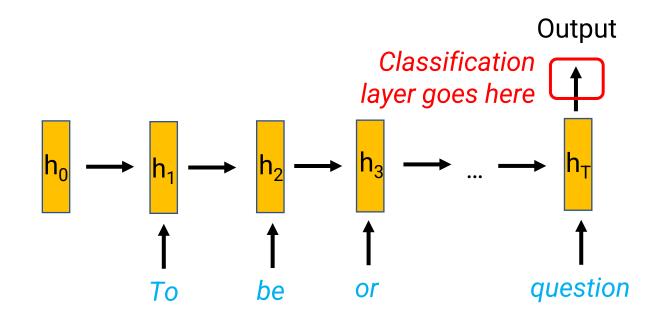
- More on reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

Review: Autoregressive Language Modeling



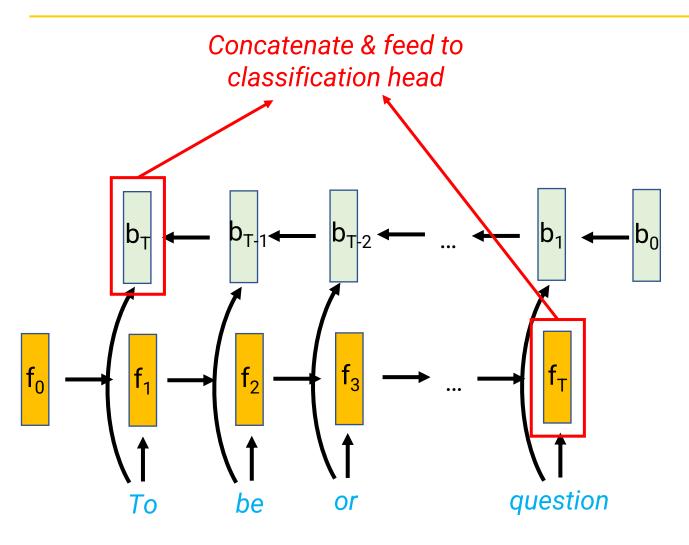
- At each step, probabilistically predict the next word given current hidden state
- One step's desired output is the next step's input ("autoregressive")
- To mark end of sequence, model should predict the [END] token
- Called a "Decoder": Looks at the hidden state and "decodes" next word

Text classification ("Encoder only")



- First run an RNN over text
- Use the final hidden state as an "encoding" of the entire sequence
- Use this as features, train a classifier on top
- Downside: Later words processed better than early words (long range dependency issues)

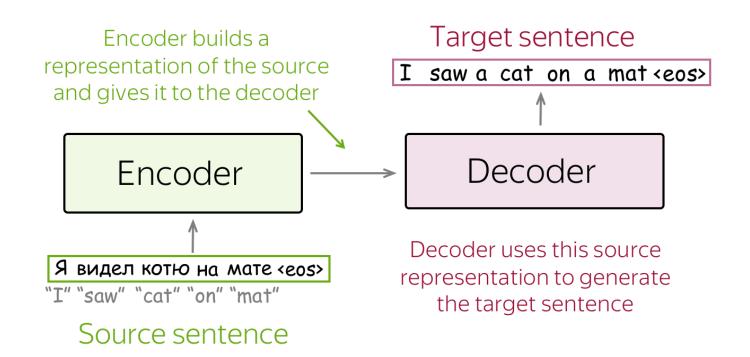
Bi-directional encoders



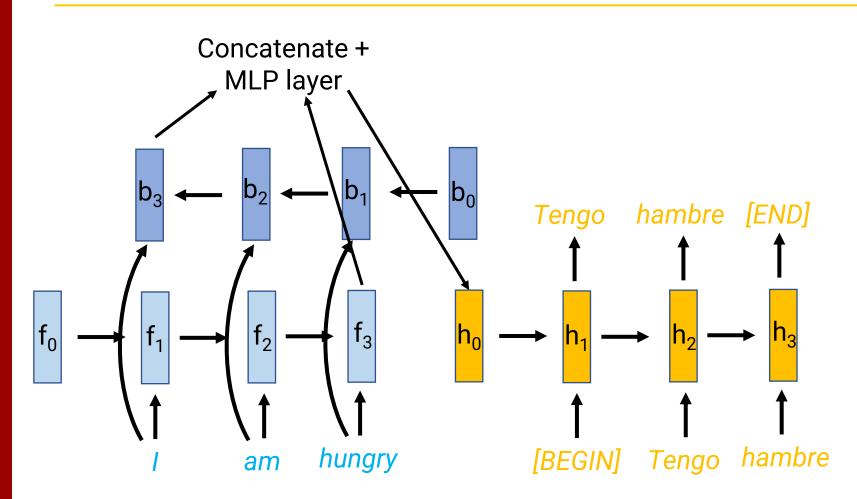
- Run one RNN left-to-right, and another one right-to-left
 - (I'll call forward-direction hidden states f_t , backward-direction hidden states b_t)
- Concatenate the 2 final hidden states as final representation
 - Note: This encoding is twice as large now—we've doubled the number of features passed to the final classifier

Sequence-to-sequence Tasks

- Sequence-to-sequence tasks
 - Machine translation (Russian -> English)
 - Summarization (Document -> Summary)
 - Personal Assistants (Command -> Action)
- Encoder: "Reads" the input sentence, produces a feature vector summarizing the input
- Decoder: Uses that vector as its initial state, predicts output tokens one at a time



Encoder-decoder model



- Example: Machine Translation
 - Input = English text
 - Output = Spanish text
- Encoder: Process English sentence into vector
 - E.g. Bidirectional encoder + MLP layer to generate decoder's initial state
- Decoder: Use vector as initial hidden state and start doing language modeling in Spanish
- Vector space acts as a "shared language"

The Power of Building Blocks

- We now know about a lot of components
- We can assemble in any way we think makes sense, given the input and desired output
- We only have to think about the forward pass!
- Code to learn parameters is always the same:
 - Get a batch of training examples
 - Compute the loss (forward pass)
 - Run backpropagation to get gradient of loss w.r.t. parameters
 - Gradient descent to update parameters

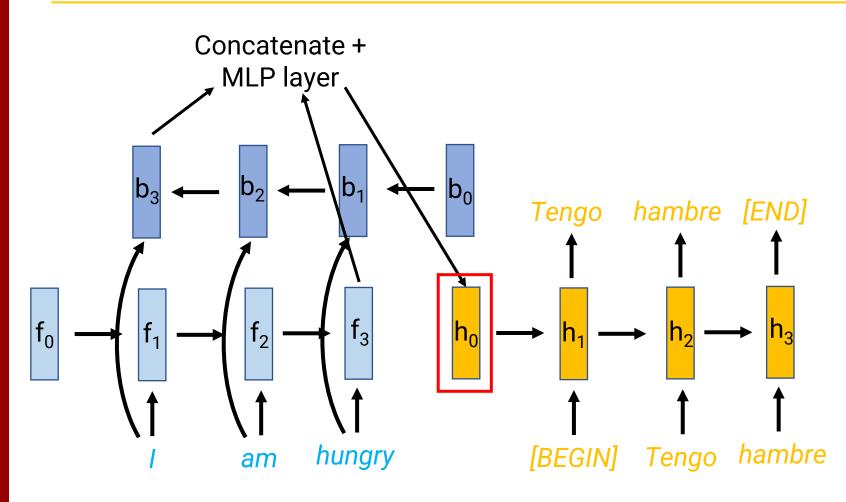
Announcements

- HW2 due today @ 11:59pm
- Section Friday: Midterm Review (practice exam + questions)
- Midterm exam: Thursday March 13
 - Practice exams released on website
 - Everything through end of today's lecture is fair game
 - Will post spreadsheet of lecture video links on Piazza

Outline

- More on reducing the effect of vanishing gradients
- Sequence-to-sequence learning
- Attention

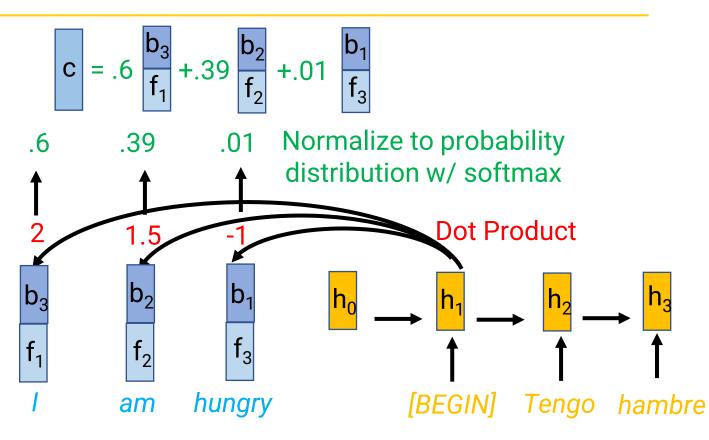
What's missing? Alignment



- Challenge: The single encoder output has to store information about the entire sentence in a single vector
- Better strategy: Look for the next input word to translate, then translate that word
- Traditional MT: Alignment between input & output sentences
- Can we get a neural network to model alignments?

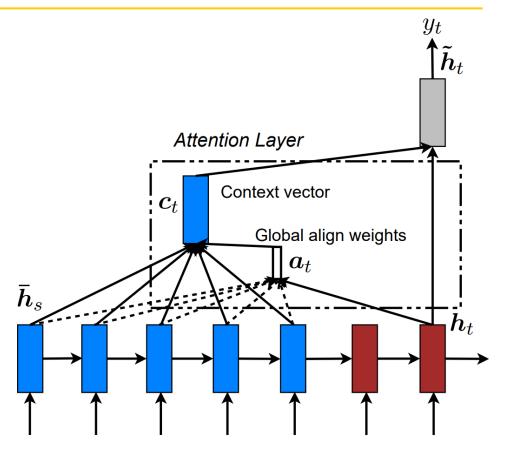
Attention

- Compute similarity between decoder hidden state and each encoder hidden state
 - E.g., dot product, if same size
- Normalize similarities to probability distribution with softmax
- Output: "Context" vector c = weighted average of encoder states based on the probabilities
 - No new parameters (like ReLU/max pool)
- Use *c* when computing decoder outputs or transitions
- Intuition
 - Step 1: Find similar input words
 - Step 2: Grab the encoder representation of those words
 - Step 3: Tell the decoder that this is relevant

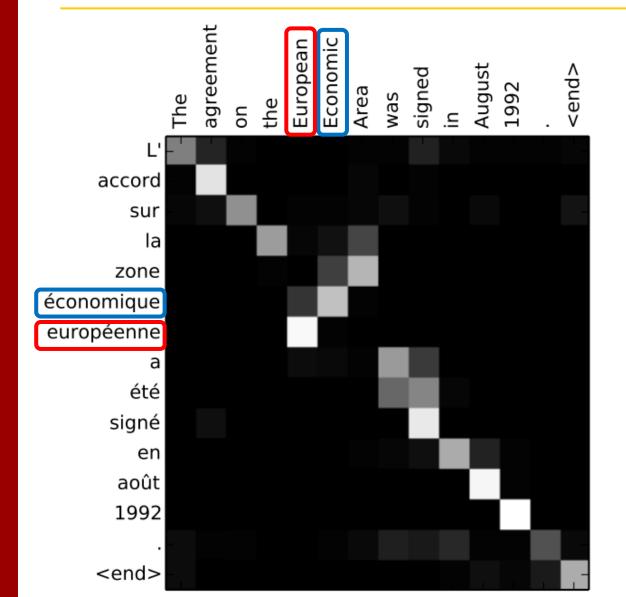


Using Attention in Seq-to-seq model

- Many similar ways one could implement an attention mechanism
- Example from a well-known 2015 paper by Luong et al. on machine translation
 - Blue = encoder states
 - Red = decoder states
 - Note: Encoder was unidirectional here
- Dot-product decoder state h_t with encoder states, then apply softmax to produce weights a_t
- Weighted sum of encoder states yields context vector c_t
- Context vector c_t concatenated with decoder state h_t , fed through 1 MLP layer to generate \tilde{h}_t
- \tilde{h}_t used to make prediction y_t



Visualizing attention



- Source is English, Target is French
- Each row is a probability distribution over the English text
- Alignment makes sense, overcomes word order differences
 - When generating "économique" attend to "Economic"
 - When generating "européenne" attend to "European"

Attention as Retrieval

Google	training a machine translation model 🛛 🗙 🌵 🤶 🔍
Images Video	s Perspectives Python Example Online Github Shopping News

About 174,000,000 results (0.18 seconds)

Pangeanic https://blog.pangeanic.com > train-machine-translation-e...

 ${\rm Oct}\ 20, 2021-A\ {\rm machine\ translation\ engine\ is\ software\ capable\ of\ translating\ texts\ from\ a\ source\ language\ to\ a\ target\ language.\ Applying\ artificial\ ...}$

How To Train Your Machine... · 1. Incorporation Of The Base... · Tips For Improving The...

Machine Learning Mastery

https://machinelearningmastery.com > Blog

How to Develop a Neural Machine Translation System from ...

Oct 6, 2020 – **Machine translation** is a challenging task that traditionally involves large statistical **models** developed using highly sophisticated linguistic ...

GitHub https://google.github.io>nmt

Tutorial: Neural Machine Translation - seq2seq

For more details on the theory of Sequence-to-Sequence and **Machine Translation models**, we recommend the following resources: ... The **training** script will save ... Neural Machine Translation... · Alternative: Generate Toy Data · Training

- Consider a search engine:
 - Queries: What you are looking for
 - E.g., What you type into Google search
 - Keys: Summary of what information is there
 - E.g., Text from each webpage
 - Values: What to give the user
 - E.g., The URL of each webpage

General Form of Attention

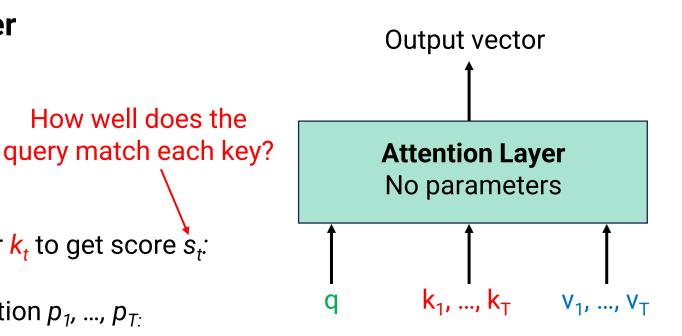
(8) Attention Layer

- Inputs (all vectors of length d):
 - Query vector q
 - Key vectors $k_1, ..., k_T$
 - Value vectors v₁, ..., v_T
- Output (also vector of length d)
 - Dot product q with each key vector k_t to get score s_t : $s_t = q^{\top} k_t$
 - Softmax to get probability distribution $p_1, ..., p_T$:

$$p_t = \frac{e^{s_t}}{\sum_{j=1}^T e^{s_j}}$$

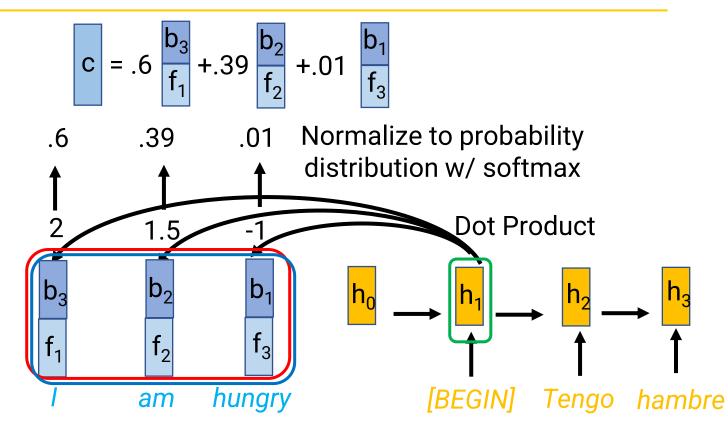
• Return weighted average of value vectors:

 $\sum_{t=1}^{n} p_t v_t$ Dominated by the values corresponding to the "best-matching" keys



Attention in Seq-to-seq RNNs

- Applies a general attention layer where:
 - Query = Current decoder hidden state
 - Keys = Encoder hidden states
 - Values = Encoder hidden states (same as keys)



Conclusion

- GRUs, LSTMs: Add gates + additive connections to reduce vanishing gradients
- Ways to use RNNs
 - As a decoder: To generate text
 - As an encoder: To produce feature vectors for text
 - Sequence-to-sequence: Use 2 RNNs, one for each purpose
- Attention: Know which part of the input matters when generating each word of the output
 - After Spring Break: Can we get rid of RNN's, and only use attention?