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Review: “Vanilla”/”Elman” RNN

• At each timestep t, run neural network that takes in 2 inputs 
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, 

word vectors 2
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Review: Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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The keys to the cabinet by the door on the left are (on the table)



Review: Vanishing Gradient Problem
• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * 

δ(h3)/δ(h2) * δ(h2)/δ(x2)

• What is each individual δ(ht)/δ(ht-1) term ?

• Elman network:

• After t timesteps, have a factor of (Wh)t (to the t-th power)!

• If Wh << 1, this quickly becomes 0 (“vanishes”) 
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Outline

• More on reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention
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Review: Avoiding Vanishing Gradients

Where did we go wrong?
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Review: Avoiding Vanishing Gradients

• Extreme idea: A purely 
additive relationship
• Pro: No vanishing gradients

• Pro: Old hidden state carried 
through to all future times

• Con: May be good to 
“forget” irrelevant 
information about old states
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Avoiding Vanishing Gradients

• Middle-ground: Gated recurrence 
relationship
• Additive component makes gradients add, not 

multiply = less vanishing gradients
• Forget gate allows for selectively “forgetting” 

some neurons within hidden state
• When forget gate is all 1’s, becomes the 

purely additive model (no vanishing)
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Gated Recurrent Units (GRUs)

• One type of gated RNN
• Here zt is the “forget gate” 

vector

• If zti = 1:
• Forget the i-th neuron

• Allow updating its value to ෨ℎ𝑡𝑖 , 
computed from rti

• If zti = 0:
• Don’t forget the i-th neuron

• Do not allow updating its value

• Additive relationship between ht-

1 and ht

• Parameters: Wz, Wr, W
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Long Short-Term Memory (LSTM)

• Another, more complicated gated RNN

• Commonly used in practice

• Overall idea:
• Split the hidden state into normal hidden 

state ht and “cell” state ct

• Cell state uses gated recurrence with 
forget gate ft

• Hidden state is gated function of cell 
state

• Also has input and output gates it & ot
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What do LSTMs learn?

• Here: a character-
level LSTM (not 
word-level)

• Blue/Green: 
Low/high values 
of 1 neuron

• Below: Top-5 
predictions for 
next character

• This neuron 
seems to detect 
whether we’re 
inside a URL
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What do LSTMs learn?

• Here: a character-
level LSTM (not 
word-level)

• Blue/Green: 
Low/high values of 
1 neuron

• Below: Top-5 
predictions for next 
character

• This neuron fires 
only inside a 
Markdown [[link]] 
(so it knows when 
to close the square 
brackets?)
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Outline

• More on reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention
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Review: Autoregressive Language Modeling

• At each step, probabilistically predict the next word given current hidden 
state

• One step’s desired output is the next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder”:  Looks at the hidden state and “decodes” next word 14
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Text classification (“Encoder only”)

• First run an RNN over text

• Use the final hidden state 
as an “encoding” of the 
entire sequence

• Use this as features, train 
a classifier on top

• Downside: Later words 
processed better than 
early words (long range 
dependency issues)
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Bi-directional encoders

• Run one RNN left-to-right, and 
another one right-to-left
• (I’ll call forward-direction hidden 

states ft, backward-direction 
hidden states bt)

• Concatenate the 2 final 
hidden states as final 
representation
• Note: This encoding is twice as 

large now—we’ve doubled the 
number of features passed to 
the final classifier
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Sequence-to-sequence Tasks

• Sequence-to-sequence tasks
• Machine translation 

(Russian -> English)
• Summarization

(Document -> Summary)
• Personal Assistants

(Command -> Action)

• Encoder: “Reads” the input 
sentence, produces a feature 
vector summarizing the input

• Decoder: Uses that vector as 
its initial state, predicts output 
tokens one at a time
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Encoder-decoder model
• Example: Machine 

Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English 
sentence into vector
• E.g. Bidirectional encoder 

+ MLP layer to generate 
decoder’s initial state

• Decoder: Use vector as 
initial hidden state and 
start doing language 
modeling in Spanish

• Vector space acts as a 
“shared language”
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The Power of Building Blocks

• We now know about a lot of components

• We can assemble in any way we think makes 
sense, given the input and desired output

• We only have to think about the forward pass!

• Code to learn parameters is always the same:
• Get a batch of training examples

• Compute the loss (forward pass)

• Run backpropagation to get gradient of loss w.r.t. 
parameters

• Gradient descent to update parameters
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Announcements

• HW2 due today @ 11:59pm

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam: Thursday March 13
• Practice exams released on website

• Everything through end of today’s lecture is fair game

• Will post spreadsheet of lecture video links on Piazza
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Outline

• More on reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention
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What’s missing? Alignment
• Challenge: The single encoder 

output has to store 
information about the entire 
sentence in a single vector

• Better strategy: Look for the 
next input word to translate, 
then translate that word

• Traditional MT: Alignment 
between input & output 
sentences

• Can we get a neural network 
to model alignments?
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Attention
• Compute similarity between decoder 

hidden state and each encoder hidden 
state
• E.g., dot product, if same size

• Normalize similarities to probability 
distribution with softmax

• Output: “Context” vector c = weighted 
average of encoder states based on the 
probabilities 
• No new parameters (like ReLU/max pool)

• Use c when computing decoder outputs 
or transitions

• Intuition
• Step 1: Find similar input words

• Step 2: Grab the encoder representation of 
those words

• Step 3: Tell the decoder that this is relevant
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Using Attention in Seq-to-seq model

• Many similar ways one could implement an 
attention mechanism

• Example from a well-known 2015 paper by Luong et 
al. on machine translation
• Blue = encoder states

• Red = decoder states
• Note: Encoder was unidirectional here

• Dot-product decoder state ht with encoder states, 
then apply softmax to produce weights at

• Weighted sum of encoder states yields context 
vector ct

• Context vector ct concatenated with decoder state 
ht, fed through 1 MLP layer to generate ෨ℎ𝑡

• ෨ℎ𝑡 used to make prediction yt

24
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Visualizing attention

• Source is English, Target is French

• Each row is a probability 
distribution over the English text

• Alignment makes sense, 
overcomes word order differences
• When generating “économique” attend 

to “Economic”

• When generating “européenne” attend 
to “European”
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Attention as Retrieval

• Consider a search engine:
• Queries: What you are 

looking for
• E.g., What you type into 

Google search

• Keys: Summary of what 
information is there
• E.g., Text from each webpage

• Values: What to give the user
• E.g., The URL of each 

webpage
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General Form of Attention

(8) Attention Layer

• Inputs (all vectors of length d):
• Query vector q
• Key vectors k1, …, kT

• Value vectors v1, …, vT

• Output (also vector of length d)
• Dot product q with each key vector kt to get score st:

• Softmax to get probability distribution p1, …, pT:

• Return weighted average of value vectors:
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q k1, …, kT v1, …, vT

Output vector

Attention Layer
No parameters

How well does the 
query match each key?

Dominated by the values corresponding 
to the “best-matching” keys



Attention in Seq-to-seq RNNs

• Applies a general attention 
layer where:
• Query =  Current decoder 

hidden state

• Keys = Encoder hidden 
states

• Values = Encoder hidden 
states (same as keys)
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Conclusion

• GRUs, LSTMs: Add gates + additive connections to reduce 
vanishing gradients

• Ways to use RNNs
• As a decoder: To generate text

• As an encoder: To produce feature vectors for text

• Sequence-to-sequence: Use 2 RNNs, one for each purpose

• Attention: Know which part of the input matters when generating 
each word of the output
• After Spring Break: Can we get rid of RNN’s, and only use attention?
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