
Deep Learning for Language:
GRUs/LSTMs, Attention

Robin Jia
USC CSCI 467, Spring 2024

February 29, 2024

Review: “Vanilla”/”Elman” RNN

• At each timestep t, run neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0,

word vectors 2

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear function of
prev. hidden state

Linear function of
current word vector

Same W’s & b for each timestep

question

Review: Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

3

The keys to the cabinet by the door on the left are (on the table)

Review: Vanishing Gradient Problem
• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … *

δ(h3)/δ(h2) * δ(h2)/δ(x2)

• What is each individual δ(ht)/δ(ht-1) term ?

• Elman network:

• After t timesteps, have a factor of (Wh)t (to the t-th power)!

• If Wh << 1, this quickly becomes 0 (“vanishes”)

4

Ignore for now The same
parameter

over and over!

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Outline

• Reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention

5

Avoiding Vanishing Gradients

Where did we go wrong?

6

Multiplicative
relationship between previous

state and next state

Leads to repeated
multiplication by Wh

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Avoiding Vanishing Gradients

• Extreme idea: A purely
additive relationship
• Pro: No vanishing gradients

• Pro: Old hidden state carried
through to all future times

• Con: May be good to
“forget” irrelevant
information about old states

7

Additive
relationship

Gradients also add,
not multiply

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Avoiding Vanishing Gradients

• Middle-ground: Gated recurrence
relationship
• Additive component makes gradients add, not

multiply = less vanishing gradients
• Forget gate allows for selectively “forgetting”

some neurons within hidden state
• When forget gate is all 1’s, becomes the

purely additive model (no vanishing)

8

Additive
relationship

“forget gate”
in [0, 1]

Elementwise multiplication

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Gated Recurrent Units (GRUs)

• One type of gated RNN
• Here zt is the “forget gate”

vector

• If zti = 1:
• Forget the i-th neuron

• Allow updating its value to ෨ℎ𝑡𝑖 ,
computed from rti

• If zti = 0:
• Don’t forget the i-th neuron

• Do not allow updating its value

• Additive relationship between ht-

1 and ht

• Parameters: Wz, Wr, W

9

Add update
to parts that

were
forgotten

Forget
parts of ht-1

Sigmoid ensures gate is
between 0 and 1

Forget gate

Planned update to ht

Actual update to ht

Long Short-Term Memory (LSTM)

• Another, more complicated gated RNN

• Commonly used in practice

• Overall idea:
• Split the hidden state into normal hidden

state ht and “cell” state ct

• Cell state uses gated recurrence with
forget gate ft

• Hidden state is gated function of cell
state

• Also has input and output gates it & ot

10

Forget gate

Cell state

Hidden state Add the previous cell state *
forget gate

Planned update to ct

What do LSTMs learn?

• Here: a character-
level LSTM (not
word-level)

• Blue/Green:
Low/high values
of 1 neuron

• Below: Top-5
predictions for
next character

• This neuron
seems to detect
whether we’re
inside a URL

11

What do LSTMs learn?

• Here: a character-
level LSTM (not
word-level)

• Blue/Green:
Low/high values of
1 neuron

• Below: Top-5
predictions for next
character

• This neuron fires
only inside a
Markdown [[link]]
(so it knows when
to close the square
brackets?)

12

Outline

• Reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention

13

Review: Autoregressive Language Modeling

• At each step, probabilistically predict the next word given current hidden
state

• One step’s desired output is the next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder”: Looks at the hidden state and “decodes” next word 14

…

To
w1

be
w2

question
wT

h0
h1 h2 hT

P(w1) P(w2 | To) P(w3 | To be) P(wT+1 |To be…question)

Softmax
Regression-style
classification over
Vocabulary + [END]

Desired output: To be or [END]

Text classification (“Encoder only”)

• First run an RNN over text

• Use the final hidden state
as an “encoding” of the
entire sequence

• Use this as features, train
a classifier on top

• Downside: Later words
processed better than
early words (long range
dependency issues)

15

…

To be or question

h1
h2

h3 hTh0

Classification
layer goes here

Output

Bi-directional encoders

• Run one RNN left-to-right, and
another one right-to-left
• (I’ll call forward-direction hidden

states ft, backward-direction
hidden states bt)

• Concatenate the 2 final
hidden states as final
representation
• Note: This encoding is twice as

large now—we’ve doubled the
number of features passed to
the final classifier

16

…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0

Concatenate & feed to
classification head

Sequence-to-sequence Tasks

• Sequence-to-sequence tasks
• Machine translation

(Russian -> English)
• Summarization

(Document -> Summary)
• Personal Assistants

(Command -> Action)

• Encoder: “Reads” the input
sentence, produces a feature
vector summarizing the input

• Decoder: Uses that vector as
its initial state, predicts output
tokens one at a time

17

Encoder-decoder model
• Example: Machine

Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English
sentence into vector
• E.g. Bidirectional encoder

+ MLP layer to generate
decoder’s initial state

• Decoder: Use vector as
initial hidden state and
start doing language
modeling in Spanish

• Vector space acts as a
“shared language”

18

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

The Power of Building Blocks

• We now know about a lot of components

• We can assemble in any way we think makes
sense, given the input and desired output

• We only have to think about the forward pass!

• Code to learn parameters is always the same:
• Get a batch of training examples

• Compute the loss (forward pass)

• Run backpropagation to get gradient of loss w.r.t.
parameters

• Gradient descent to update parameters

19

Announcements

• HW2 due today @ 11:59pm

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam: Thursday March 7, SLH 100
• Practice exams released on website

• Everything through end of today’s lecture is fair game

• Will post spreadsheet of lecture video links on Piazza

20

Outline

• Reducing the effect of vanishing gradients

• Sequence-to-sequence learning

• Attention

21

What’s missing? Alignment
• Challenge: The single encoder

output has to store
information about the entire
sentence in a single vector

• Better strategy: Look for the
next input word to translate,
then translate that word

• Traditional MT: Alignment
between input & output
sentences

• Can we get a neural network
to model alignments?

22

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

Attention
• Compute similarity between decoder

hidden state and each encoder hidden
state
• E.g., dot product, if same size

• Normalize similarities to probability
distribution with softmax

• Output: “Context” vector c = weighted
average of encoder states based on the
probabilities
• No new parameters (like ReLU/max pool)

• Use c when computing decoder outputs
or transitions

• Intuition
• Step 1: Find similar input words

• Step 2: Grab the encoder representation of
those words

• Step 3: Tell the decoder that this is relevant

23

I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c

Dot Product

Using Attention in Seq-to-seq model

• Many similar ways one could implement an
attention mechanism

• Example from a well-known 2015 paper by Luong et
al. on machine translation
• Blue = encoder states

• Red = decoder states
• Note: Encoder was unidirectional here

• Dot-product decoder state ht with encoder states,
then apply softmax to produce weights at

• Weighted sum of encoder states yields context
vector ct

• Context vector ct concatenated with decoder state
ht, fed through 1 MLP layer to generate ෨ℎ𝑡

• ෨ℎ𝑡 used to make prediction yt

24
Luong, Pham, and Manning. Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015.

Visualizing attention

• Source is English, Target is French

• Each row is a probability
distribution over the English text

• Alignment makes sense,
overcomes word order differences
• When generating “économique” attend

to “Economic”

• When generating “européenne” attend
to “European”

25

Attention as Retrieval

• Consider a search engine:
• Queries: What you are

looking for
• E.g., What you type into

Google search

• Keys: Summary of what
information is there
• E.g., Text from each webpage

• Values: What to give the user
• E.g., The URL of each

webpage

26

General Form of Attention

(8) Attention Layer

• Inputs (all vectors of length d):
• Query vector q
• Key vectors k1, …, kT

• Value vectors v1, …, vT

• Output (also vector of length d)
• Dot product q with each key vector kt to get score st:

• Softmax to get probability distribution p1, …, pT:

• Return weighted average of value vectors:

27

q k1, …, kT v1, …, vT

Output vector

Attention Layer
No parameters

How well does the
query match each key?

Dominated by the values corresponding
to the “best-matching” keys

Attention in Seq-to-seq RNNs

• Applies a general attention
layer where:
• Query = Current decoder

hidden state

• Keys = Encoder hidden
states

• Values = Encoder hidden
states (same as keys)

28

I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c

Dot Product

Conclusion

• GRUs, LSTMs: Add gates + additive connections to reduce
vanishing gradients

• Ways to use RNNs
• As a decoder: To generate text

• As an encoder: To produce feature vectors for text

• Sequence-to-sequence: Use 2 RNNs, one for each purpose

• Attention: Know which part of the input matters when generating
each word of the output
• After Spring Break: Can we get rid of RNN’s, and only use attention?

29

	Default Section
	Slide 1: Deep Learning for Language: GRUs/LSTMs, Attention
	Slide 2: Review: “Vanilla”/”Elman” RNN
	Slide 3: Review: Long-Range Dependencies
	Slide 4: Review: Vanishing Gradient Problem
	Slide 5: Outline
	Slide 6: Avoiding Vanishing Gradients
	Slide 7: Avoiding Vanishing Gradients
	Slide 8: Avoiding Vanishing Gradients
	Slide 9: Gated Recurrent Units (GRUs)
	Slide 10: Long Short-Term Memory (LSTM)
	Slide 11: What do LSTMs learn?
	Slide 12: What do LSTMs learn?
	Slide 13: Outline
	Slide 14: Review: Autoregressive Language Modeling
	Slide 15: Text classification (“Encoder only”)
	Slide 16: Bi-directional encoders
	Slide 17: Sequence-to-sequence Tasks
	Slide 18: Encoder-decoder model
	Slide 19: The Power of Building Blocks
	Slide 20: Announcements
	Slide 21: Outline
	Slide 22: What’s missing? Alignment
	Slide 23: Attention
	Slide 24: Using Attention in Seq-to-seq model
	Slide 25: Visualizing attention
	Slide 26: Attention as Retrieval
	Slide 27: General Form of Attention
	Slide 28: Attention in Seq-to-seq RNNs
	Slide 29: Conclusion

