
Deep Learning for Language:
Recurrent Neural Networks

Robin Jia
USC CSCI 467, Spring 2025

March 4, 2025

Peculiarities of language data

• Peculiarity #1: Text is not a numerical format
• Feature vector = list of numbers

• Image = 3xWxH grid of pixel brightness values

• Text = sequence of words, not numbers

• Peculiarity #2: Text is variable sized
• Feature vectors are always the same size for different examples

• Images can be cropped/rescaled to be the same size for all examples

• Text: Different examples have different # of words

2

Feeding Words to a Neural Network

• Peculiarity #1: Words are not
numerical

• Solution: Learn word vectors, feed
word vector of each word to model!

• Original input: T words

• Vector input: T vectors, each of size d

3

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]
Text input: A zoo elephant
Vector input:

-0.4

1.4

-1.2

2.1

-1.4

3.2

2.1

-1.3

0.3

RNN “Building Blocks”
(6) Word Vector Layer

• Input w: A word (from our vocabulary)
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors for each

word

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector

parameter vw of shape d
• Think of this as a dictionary called word_vecs, where the

keys are words & values are learned parameter vectors
• Can initialize using word2vec, or randomly
• Train them further with gradient descent to help final task

• In pytorch: nn.Embedding()

4

Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

5

Handling variable length

• Peculiarity #2: Documents have
different numbers of words
• Example 1: Amazing!

• Example 2: There are many issues
with this movie, such as…

• Problem: In previous models,
number of parameters depends
on size of inputs

• Challenge: How can we use the
same set of model parameters
to handle inputs of any size?

6

Linear
regression

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8

Each wi is of length d

Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time
• At each step, update the hidden state of

the network
• Model parameters to do this update are

same for each step

7

Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of
the same neural network

Output

A “Vanilla”/”Elman” RNN

• At each timestep t, run neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0,

word vectors 8

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear function of
prev. hidden state

Linear function of
current word vector

Same W’s & b for each timestep

question

RNN as Repeated Application of 1 MLP layer

9

First word vector
x1 = word_vecs[To]
(size = din)

Initial hidden
state h0

(size = dout)

Wx

(dout x din)
Wh

(dout x dout)

x

b
(size =dout)

+ =

h1

(size =dout)

tanh

Like one matrix
(dout x (din + dout))

Linear transformation of input (with bias), then nonlinearity
AKA One MLP layer!

Legend:
Word vectors
Other learned parameters
Hidden states

RNN as Repeated Application of 1 MLP layer

10

First word vector
x1 = word_vecs[To]
(size = din)

Initial hidden
state h0

(size = dout)

Wx

(dout x din)
Wh

(dout x dout)

x

b
(size =dout)

+ =

h1

(size =dout)

tanh

Like one matrix
(dout x (din + dout))

Second word vector
x2 = word_vecs[be]
(size = din)

Previous hidden
state h1

(size = dout)

Wx

(dout x din)
Wh

(dout x dout)

x

b
(size =dout)

+ =

h2

(size =dout)

tanh

Like one matrix
(dout x (din + dout))

RNN “Building Blocks”

(7) RNN Layer

• Input: List of vectors x1, …, xT, each of size din
• E.g., xt is word vector for t-th word in sentence
• Equivalent to a T x din matrix

• Output: List of vectors h1, …, ht, each of size dout
• dout: Dimension of hidden state
• Equivalent to a T x dout matrix

• Formula (Elman RNN):

• Parameters:
• Wh: Matrix of shape (dout, dout)
• Wx: Matrix of shape (dout, din)
• b: Vector of shape (dout,)
• h0: Vector of shape (dout,)

• In pytorch: nn.RNN(), etc.
11

Input x1, …, xT, each shape din

RNN Layer
Params: Wh, Wx, b, h0

Output h1, …, hT, each shape dout

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

Recurrent Neural Network Diagrams

• Can also visualize RNN’s
with a diagram that has a
cycle (“recurrence”)
• RNN layer is just a neural

network that takes in two
vectors and produces a third
vector

• New vector gets fed back in
next timestep

• Previous slide is the
“unrolled” diagram

12

Previous
hidden

state ht-1

RNN Layer
Params: Wh, Wx, b, h0

Current
word

(vector) xt

Current
hidden
state ht

Becomes “previous hidden
state” in next timestep

Recurrence vs. Depth

• Deep networks (i.e., adding more layers)
• Computation graph becomes longer
• Number of parameters also grows; each step uses new parameters

• Recurrent neural networks
• Computation graph becomes longer
• Number of parameters fixed; each step uses same parameters

13

Final layer

Input x

First hidden
layer z(1)

Output y

Second hidden
layer z(2)

Third hidden
layer z(3)

Recurrence and Depth

• You can have multiple
layers of recurrence too!
• Left-to-right axis (“time

dimension”): Length is
size of input, same
parameters in each step

• Top-to-bottom axis
(“depth dimension”):
Length is depth of
network, different
parameters in each row

14

…

To be or question

h1
(1)h0

(1) h2
(1) h3

(1) hT
(1)

…h1
(2)h0

(2) h2
(2) h3

(2) hT
(2)

Layer 1

Layer 2

Training an RNN

• Basic usage of RNN: Make prediction based on
final hidden state

• Same recipe: Backpropagation to compute
gradients + gradient descent

• Must backpropagate through whole computation
graph
• “Backpropagation through time”

15

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Output

question

Initial hidden
state h0

Building an RNN encoder model

• A generic RNN architecture
• Map each word to a vector

• Feed word vectors to RNN to
generate list of hidden states

• Feed final hidden state to MLP to
make final prediction (e.g.,
document classification)

• Basic steps are still all the
same
• Backpropagation still works

• Gradient descent needed to
update all parameters

16
N

e
u

ra
l N

e
tw

o
rk

 M
o

d
e

l

Input words w1, …, wT

w1 w2 w3 w4 w5

h1 h2 h3 h4 h5

Word Vector Layer
Params: vw for each w in vocab

Linear Layer 2
Params: w2, b2

ReLU Layer

Linear Layer 1
Params: w1, b1

RNN Layer
Params: Wh, Wx, b, h0

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

17

Autoregressive Language Modeling

• At each step, probabilistically predict the next word given current hidden
state

• One step’s desired output is the next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder”: Looks at the hidden state and “decodes” next word 18

…

To
w1

be
w2

question
wT

h0
h1 h2 hT

P(w1) P(w2 | To) P(w3 | To be) P(wT+1 |To be…question)

Softmax
Regression-style
classification over
Vocabulary + [END]

Desired output: To be or [END]

Autoregressive Language Model Training

• Training example: “Convolutional neural networks are good for image classification”

• Want to maximize P(“Convolutional neural networks are good for image
classification”)

• MLE: Take log and decompose by chain rule:
 log P(“Convolutional”)
+ log P(“neural” | “Convolutional”)
+ log P(“networks” | “Convolutional neural”)
+ log P(“are” | “Convolutional neural networks”) + …

• Decomposes into a bunch of next-word-classification problems

• Backpropagation + gradient descent to minimize loss
• Update RNN parameters
• Update word vectors
• Update final layer classifier over vocabulary

19

Generating text with LM’s

• Test time: Given some prefix, “autocomplete” the rest of the sentence

• First, feed prefix as input to model

• At each timestep, choose next word based on model’s predictions
• Greedy: Choose the most likely word

• Sampling: Sample from the model’s probability distribution over words

• Feed the model’s generated word back as the next word, stop if [END]
20

…

Neural
w1

networks
w2

learning
wt

h0
h1 h2 hT

P(w2 | Neural) P(w3 | Neural networks) P(wt+1 | Neural networks
are…learning)

networks are [END]Greedy/Sampled word:

(ignore this
prediction)

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

21

The keys to the cabinet ___ (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

22

The keys to the cabinet are (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

23

The keys to the cabinet by the door are (on the table)

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

24

The keys to the cabinet by the door on the left are (on the table)

Long-Range Dependencies

• “Coreference”: When two words
refer to the same underlying
person/place/thing
• Pronouns typically corefer to an
antecedent (something mentioned
earlier in the text)

• Coreference relationships can
even span multiple sentences

25

Even longer-range dependencies

• Imagine trying to generate a
novel…
• Same set of characters

• Characters have to behave in
consistent ways

• Sensible ordering of events

26

Announcements

• HW2 due this Thursday, March 6

• Section Friday: Midterm preparation

• Midterm exam: Thursday March 13
• Refer to Piazza for logistics including which room to go to

• Practice exams released on website

• Midterm will cover all topics through end of this week

• Please write in pen

27

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

28

Backpropagation through time, revisited
• Model needs to know that the correct word is are because of the word keys!

• Let’s backpropagate the loss on generating are to the word vector parameters for keys
• For simplicity, let’s assume all the hidden states are just 1-dimensional

• Step 1: Compute δLoss/δ(hT)
• Step 2: Compute δLoss/δ(hT-1) = δLoss/δ(hT) * δ(hT)/δ(hT-1)

• Step 3: Compute δLoss/δ(hT-2) = δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2)

• …
• Gradient through “keys” hidden state: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2)

• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2) * δ(h2)/δ(x2)

29

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

The Vanishing Gradient Problem
• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … *

δ(h3)/δ(h2) * δ(h2)/δ(x2)

• What is each individual δ(ht)/δ(ht-1) term ?

• Elman network:

• After t timesteps, have a factor of (Wh)t (to the t-th power)!

• If Wh << 1, this quickly becomes 0 (“vanishes”)

30

Ignore for now The same
parameter

over and over!

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

The Vanishing Gradient Problem

• Vanishing Gradients: Updates to one word/hidden state not
influenced by loss on words many steps in the future
• Illustrated only for 1-dimensional hidden states, but same thing happens

when states are vectors/parameters are matrices

• Result: Hard for model to learn long-range dependencies!

31

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Vanishing and Exploding

• Vanishing gradient occurs because
• Gradient w.r.t. words t steps in the past has (Wh)t

• And when Wh << 1 (e.g., at initialization time)

• What if Wh > 1?
• Gradients get bigger as you go backwards in time: Exploding

gradients!
• Vanishing gradients more usual, but explosion can happen too

• Quick fix: Gradient Clipping
• If gradient is super large, “clip” it to some maximum amount

• Rescale the total vector to some maximum norm
• Clip each entry to be within some minimum/maximum value

• Outside of RNNs, vanishing/exploding gradients can
happen whenever you have long computation graphs with
lots of multiplications

32

Avoiding Vanishing Gradients

• Where did we go wrong?

33

Multiplicative
relationship between previous

state and next state

Leads to repeated
multiplication by Wh

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Avoiding Vanishing Gradients

• Extreme idea: A purely
additive relationship
• Pro: No vanishing gradients

• Pro: Old hidden state carried
through to all future times

• Con: May be good to
“forget” irrelevant
information about old states

34

Additive
relationship

Gradients also add,
not multiply

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Avoiding Vanishing Gradients

• Middle-ground: Gated recurrence
relationship
• Additive component makes gradients add, not

multiply = less vanishing gradients
• Forget gate allows for selectively “forgetting”

some neurons within hidden state
• When forget gate is all 1’s, becomes the

purely additive model (no vanishing)

35

Additive
relationship

“forget gate”
in [0, 1]

Elementwise multiplication

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Gated Recurrent Units (GRUs)

• One type of gated RNN
• Here z is the “forget gate”

vector
• Where zi = 0:

• Forget this neuron
• Allow updating its value

• Where zi = 1:
• Don’t forget this neuron
• Do not allow updating its value

• Parameters: W, U, plus
parameters of g
• (g has a slightly complicated

form not shown, has its own
parameters)

36

Additive
relationship“forget gate”

Sigmoid ensures gate is
between 0 and 1

Long Short-Term Memory (LSTM)

• Another, more complicated gated
RNN

• Commonly used in practice

• What’s the idea?
• Split the hidden state into normal

hidden state ht and “cell” state ct

• Cell state uses gated recurrence
• Hidden state is gated function of

cell state

37

What do LSTMs learn?

• Here: a character-
level LSTM (not
word-level)

• Blue/Green:
Low/high values
of 1 neuron

• Below: Top-5
predictions for
next character

• This neuron
seems to detect
whether we’re
inside a URL

38

What do LSTMs learn?

• Here: a character-
level LSTM (not
word-level)

• Blue/Green:
Low/high values of
1 neuron

• Below: Top-5
predictions for next
character

• This neuron fires
only inside a
Markdown [[link]]
(so it knows when
to close the square
brackets?)

39

Conclusion

• Deep Learning for Language must deal with possibly long inputs

• RNNs handle arbitrarily long inputs with fixed number of
parameters

• Need to handle long-range dependencies, but hard to learn due to
vanishing gradients

• Gated RNNs (GRUs, LSTMs) can reduce vanishing gradient
problems

40

	Default Section
	Slide 1: Deep Learning for Language: Recurrent Neural Networks
	Slide 2: Peculiarities of language data
	Slide 3: Feeding Words to a Neural Network
	Slide 4: RNN “Building Blocks”
	Slide 5: Outline
	Slide 6: Handling variable length
	Slide 7: Recurrent Neural Networks (RNNs)
	Slide 8: A “Vanilla”/”Elman” RNN
	Slide 9: RNN as Repeated Application of 1 MLP layer
	Slide 10: RNN as Repeated Application of 1 MLP layer
	Slide 11: RNN “Building Blocks”
	Slide 12: Recurrent Neural Network Diagrams
	Slide 13: Recurrence vs. Depth
	Slide 14: Recurrence and Depth
	Slide 15: Training an RNN
	Slide 16: Building an RNN encoder model
	Slide 17: Outline
	Slide 18: Autoregressive Language Modeling
	Slide 19: Autoregressive Language Model Training
	Slide 20: Generating text with LM’s
	Slide 21: Long-Range Dependencies
	Slide 22: Long-Range Dependencies
	Slide 23: Long-Range Dependencies
	Slide 24: Long-Range Dependencies
	Slide 25: Long-Range Dependencies
	Slide 26: Even longer-range dependencies
	Slide 27: Announcements
	Slide 28: Outline
	Slide 29: Backpropagation through time, revisited
	Slide 30: The Vanishing Gradient Problem
	Slide 31: The Vanishing Gradient Problem
	Slide 32: Vanishing and Exploding
	Slide 33: Avoiding Vanishing Gradients
	Slide 34: Avoiding Vanishing Gradients
	Slide 35: Avoiding Vanishing Gradients
	Slide 36: Gated Recurrent Units (GRUs)
	Slide 37: Long Short-Term Memory (LSTM)
	Slide 38: What do LSTMs learn?
	Slide 39: What do LSTMs learn?
	Slide 40: Conclusion

