
Word Vectors &
word2vec

Robin Jia
USC CSCI 467, Spring 2025

February 27, 2025

With a lot borrowed from Jurafsky & Martin, “Speech and Language Processing”
https://web.stanford.edu/~jurafsky/slp3/

https://web.stanford.edu/~jurafsky/slp3/

Review: Convolutions

• Convolutional Layer
• Extract 1 feature for each window of input

by applying kernel
• Output is computed as a dot product (linear

operation)

• Local Receptive Field: Each output cell is
computed based on a small window of
the input image

• Weight Sharing: Same kernel used to
process each window of the input image
• The kernel defines a classifier (e.g., is there

a moose here?) that gets applied to every
window of the image

2

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input
(5 x 6)

Output
(5-3+1 x 6-3+1)

=(3 x 4)

(1, 2)-th
element

input[1:4,2:5]

Review: Convolutional Neural Networks

• Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
• Convolutions at beginning to understand

each small window of image
• Fully connected layer at end to make overall prediction

3

Review: The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()

4

Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute
y = Wx + b

Params: W, b

Review: The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

5

Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute
yi = σ(xi)

for each i

Review: The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

6

Input ypred,
scalar

Output z,
scalar

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input ytrue,
scalar

CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()

7

Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
Convolve kernel

with input

Params: Kernel

CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute
max

• Parameters: None

• In pytorch: nn.MaxPool2d()

8

Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch

CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute
max

• Parameters: None

• In pytorch: nn.MaxPool2d()

9

Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch

Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to

extract features
• Then use MLP to make final

prediction

• Basic steps are still all the
same
• Backpropagation still works

• Gradient descent needed to
update all parameters

10

Linear Layer 2
Params: w2, b2

Input x

ReLU Layer

Linear Layer 1
Params: w1, b1

N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Convolutional Layer
Params: Kernel

Max Pool Layer

ReLU Layer

Announcements

• HW1 grades out
• Please review the solutions posted on Brightspace

• Regrade requests open through next Tuesday, March 4

• HW2 due next Thursday, March 6

• Midterm exam Thursday, March 13
• Practice midterms posted online

• Section this week: Scikit-learn tutorial

• Reading group plan

11

Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

12

Word vectors

13

• Goal: For each word w, learn vector
vw that represents word’s meaning
• Similar words should have similar

vectors
• Different components of the vector

may represent different properties of a
word

• Why?
• Neural networks take vectors as

inputs. To feed them sentences, need
to represent each word as a vector

• Independently interesting to
understand relationships between
words

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]

Related to animals? Is a place

Visualizing word vectors

• Goal: For each word w, learn
vector vw that represents
word’s meaning
• Similar words should have

similar vectors

• Different components of the
vector may represent different
properties of a word

14

A New “Building Block”
(6) Word Vector Layer

• Input w: A word (from our vocabulary)
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors for each

word

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector

parameter vw of shape d
• |V| * d total parameters needed
• Think of this as a dictionary called word_vecs, where the

keys are words & values are learned parameter vectors
• Can initialize using word2vec, or randomly
• Train them further with gradient descent to help final task

• In pytorch: nn.Embedding()
15

Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)

Lexical Semantics

• Word vectors should capture lexical semantics
• Lexical = word-level

• Semantics = meaning

• What do we want to represent?
• Synonymy (car/automobile) or antonymy (cold/hot)

• Hypernymy/Hyponymy (animal/dog)

• Similarity (cat/dog, coffee/cup, waiter/menu)

• Various features

• Sentiment (positive/negative)

• Formality

• All sorts of properties (Is a city? Is an action that a person can do?)

16

vcat vdog vhot …

The Distributional Hypothesis

• You hear a new word, ongchoi
• Ongchoi is delicious sauteed with garlic.

• Ongchoi is superb over rice.

• ...ongchoi leaves with salty sauces...

• Compare with similar contexts:
• ...spinach sauteed with garlic over rice...

• ...chard stems and leaves are delicious...

• ...collard greens and other salty leafy
greens

17

• Conclusion: ongchoi is probably a leafy green
similar to spinach, chard, and collard greens

• Distributional Hypothesis: Words appearing in
similar contexts have similar meanings!

• Firth 1957: “You Shall Know a Word by the
Company It Keeps”

Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

18

Word vectors as a learning problem

• Want to learn vector vw for each
word w

• What makes a vector good?

• Idea: vw should help you predict
which words co-occur with w
• Captures distribution of context

words for w

• Think of it as N binary classification
problems, where N is size of
vocabulary

19

vongchoi

“sauteed”? Yes
“rice”? Yes
“kicked”? No
“car”? No

Creating a dataset

• Given: Raw dataset of text
(unsupervised)

• We will create N “fake” supervised
learning problems!
• We don’t really care about these

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences

within sliding window
• Negative examples: Random samples

20

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

Word w

Creating a dataset

• Given: Raw dataset of text
(unsupervised)

• We will create N “fake” supervised
learning problems!
• We don’t really care about these

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences

within sliding window
• Negative examples: Random samples

21

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w

How to sample negatives?

• Choose a fixed ratio of negative:positive
(e.g. 2)

• Baseline: Sample according to frequency of
word p(w) in the data
• Not ideal because very common words (“the”)

get sampled a lot

• Improvement: Sample according to α-
weighted frequency

• For α < 1, high-frequency words get down-
weighted

• Typically choose around α=.75

22

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w

word2vec model

• Parameters (all of dimension d):
• Word vector vw for each word (“features”—the actual word

vectors)
• Context vector cw for each word (“classifier weights” for task

corresponding to w as context)

• Goal: vw can be used by linear classifier to do any of
the N “was this a context word” tasks

• Objective looks just like logistic regression:

23

vcat vdog vhot …

ccat cdog chot …

word context
“features”
for word

“weight”
for context

Training word2vec

• Strategy: Gradient descent

• Gradient updates essentially same as logistic regression
• Gradient w.r.t. c holds v fixed, so it’s like v are fixed features

• Gradient w.r.t. v is symmetrical

24

Examples where w’ = u
Same as logistic regression

where vw is the input x

Examples where w = u
Same as logistic regression

where cw’ is the input x

Is this a convex problem?

• Looks a lot like logistic regression…

• But it’s not convex!

• Why?
• In logistic regression, we only optimize w.r.t.

weights, features are constant
• Now we optimize both at the same time!

• Fact to remember: f(x) = x1 * x2 is not
convex
• Consider points [-1, 1] and [1, -1]
• f(x) = -1 at both points
• But at the midpoint [0, 0], f(x) = 0

• Corollary: We need to randomly initialize
• Must break symmetry, as in neural networks

25

Both are optimization
variables

f([-1,1]) = -1

f([1,-1]) = -1

f([0,0]) = 0

Word vectors vs. Context vectors

Word Vector Space Context Vector Space

26

cat

horse

house zoo

chair
x1

“animal”
direction

x2

“place”
direction

x1

“animal-related”
direction

x2

“place-related”
direction

eat bite

address
north

pencil

word2vec overview

• Acquire large unsupervised text corpus

• Create positive examples for every word by using
sliding window

• Create negative examples by randomly sampling
context word from weighted word frequency

• Randomly initialize all v and c vectors

• Train on logistic regression-like loss with gradient
descent

• Return v vectors
• c vectors not needed—just helpers

27

vcat vdog vhot …

ccat cdog chot …

Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

28

tree

vine

Analogies in vector space

• Apple is to tree as grape is to…

• In vector space, resembles a
parallelogram
• Same relationship between apple and

tree holds between grape and vine

• vvine ≈ vtree – vapple + vgrape

29

apple

grape

Represents the
“grows on” relation

Query
word

Answering analogy queries

• Compute v = vtree – vapple + vgrape

• Find word w in vocabulary whose vw
is most similar to v
• Common choice: Cosine similarity

 (= cosine of angle between x and y)

• Typically need to exclude words very
similar to the query word (e.g. “grapes”)

30

tree

v

apple

grape vine

θ

Visualizing Analogies

• Figure: Dimensionality reduction
to 2D, then plot words with
known relationship
• We’ll talk about dimensionality

reduction later!

• Roughly same difference
between male/female versions
of the same word

31

Visualizing Analogies

• Figure: Dimensionality reduction
to 2D, then plot words with
known relationship
• We’ll talk about dimensionality

reduction later!

• Roughly same difference
between base, comparative,
and superlative forms of
adjectives

32

Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

33

Machine learning is a tornado

• …it picks up everything
in its path

• Data has all sorts of
associations we may
not want to model

34

What word associations are out there?

• What is programmer – man + woman?
• According to word vectors trained on news data, it’s homemaker

• Existing data has tons of correlations between occupation and gender

• word2vec doesn’t know what is a semantic relationship and what is
a historical correlation
• “queen” is more related to “she” than “he” semantically

• “nurse” may co-occur more with “she” than “he” in available data but not a
semantic relationship!

35

Word vectors quantify gender stereotypes

• X-axis: Real percentage
difference in workforce
between women & men

• Y-axis: Embedding bias
= difference of distance
from male-related
words and female-
related words

• Strong correlation!

36

Conclusion

• Distributional hypothesis: Words that
appear in similar contexts have similar
meanings

• word2vec: Learn vectors by inventing a
prediction problem (did this word-
context pair really occur in the text?)

• Vector arithmetic lets us complete
relations

• Vectors capture both lexical semantics
and historical biases

• Next time: Word vectors as a
component of neural networks for
processing text

37

… lemon, a tablespoon of apricot jam, a pinch…

Word w

Window of radius 2

Extra slides, time permitting

38

Peculiarities of language data

• Peculiarity #1: Text is not a numerical format
• Feature vector = list of numbers

• Image = 3xWxH grid of pixel brightness values

• Text = sequence of words, not numbers

• Peculiarity #2: Text is variable sized
• Feature vectors are always the same size for different examples

• Images can be cropped/rescaled to be the same size for all examples

• Text: Different examples have different # of words

39

Feeding Words to a Neural Network

• Peculiarity #1: Words are not
numerical

• Solution: Learn word vectors, feed
word vector of each word to model!

• Original input: T words

• Vector input: T vectors, each of size d

40

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]
Text input: A zoo elephant
Vector input:

-0.4

1.4

-1.2

2.1

-1.4

3.2

2.1

-1.3

0.3

RNN “Building Blocks”
(6) Word Vector Layer

• Input w: A word (from our vocabulary)
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors for each

word

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector

parameter vw of shape d
• Think of this as a dictionary called word_vecs, where the

keys are words & values are learned parameter vectors
• Can initialize using word2vec, or randomly
• Train them further with gradient descent to help final task

• In pytorch: nn.Embedding()

41

Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)

Handling variable length

• Peculiarity #2: Documents have
different numbers of words
• Example 1: Amazing!

• Example 2: There are many issues
with this movie, such as…

• Problem: In previous models,
number of parameters depends
on size of inputs

• Challenge: How can we use the
same set of model parameters
to handle inputs of any size?

42

Linear
regression

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8

Each wi is of length d

Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time
• At each step, update the hidden state of

the network
• Model parameters to do this update are

same for each step

43

Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of
the same neural network

Output

A “Vanilla”/”Elman” RNN

• At each timestep t, run neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0,

word vectors 44

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear function of
prev. hidden state

Linear function of
current word vector

Same W’s & b for each timestep

question

RNN “Building Blocks”

(7) RNN Layer

• Input: List of vectors x1, …, xT, each of size din
• E.g., xt is word vector for t-th word in sentence
• Equivalent to a T x din matrix

• Output: List of vectors h1, …, ht, each of size dout
• dout: Dimension of hidden state
• Equivalent to a T x dout matrix

• Formula (Elman RNN):

• Parameters:
• Wh: Matrix of shape (dout, dout)
• Wx: Matrix of shape (dout, din)
• b: Vector of shape (dout,)
• h0: Vector of shape (dout,)

• In pytorch: nn.RNN(), etc.
45

Input x1, …, xT, each shape din

RNN Layer
Params: Wh, Wx, b, h0

Output h1, …, hT, each shape dout

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

	Default Section
	Slide 1: Word Vectors & word2vec
	Slide 2: Review: Convolutions
	Slide 3: Review: Convolutional Neural Networks
	Slide 4: Review: The Basic “Building Blocks”
	Slide 5: Review: The Basic “Building Blocks”
	Slide 6: Review: The Basic “Building Blocks”
	Slide 7: CNN “Building Blocks”
	Slide 8: CNN “Building Blocks”
	Slide 9: CNN “Building Blocks”
	Slide 10: Building a CNN Model
	Slide 11: Announcements
	Slide 12: Outline
	Slide 13: Word vectors
	Slide 14: Visualizing word vectors
	Slide 15: A New “Building Block”
	Slide 16: Lexical Semantics
	Slide 17: The Distributional Hypothesis
	Slide 18: Outline
	Slide 19: Word vectors as a learning problem
	Slide 20: Creating a dataset
	Slide 21: Creating a dataset
	Slide 22: How to sample negatives?
	Slide 23: word2vec model
	Slide 24: Training word2vec
	Slide 25: Is this a convex problem?
	Slide 26: Word vectors vs. Context vectors
	Slide 27: word2vec overview
	Slide 28: Outline
	Slide 29: Analogies in vector space
	Slide 30: Answering analogy queries
	Slide 31: Visualizing Analogies
	Slide 32: Visualizing Analogies
	Slide 33: Outline
	Slide 34: Machine learning is a tornado
	Slide 35: What word associations are out there?
	Slide 36: Word vectors quantify gender stereotypes
	Slide 37: Conclusion
	Slide 38: Extra slides, time permitting
	Slide 39: Peculiarities of language data
	Slide 40: Feeding Words to a Neural Network
	Slide 41: RNN “Building Blocks”
	Slide 42: Handling variable length
	Slide 43: Recurrent Neural Networks (RNNs)
	Slide 44: A “Vanilla”/”Elman” RNN
	Slide 45: RNN “Building Blocks”

