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Review: Convolutions

• Convolutional Layer
• Extract 1 feature for each window of input 

by applying kernel
• Output is computed as a dot product (linear 

operation)

• Local Receptive Field: Each output cell is 
computed based on a small window of 
the input image

• Weight Sharing: Same kernel used to 
process each window of the input image
• The kernel defines a classifier (e.g., is there 

a moose here?) that gets applied to every 
window of the image
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Review: Convolutional Neural Networks

• Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
• Convolutions at beginning to understand 

each small window of image
• Fully connected layer at end to make overall prediction
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Review: The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()
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Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute 
y = Wx + b

Params: W, b



Review: The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of 
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(), 
nn.functional.relu(), etc.
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Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute 
yi = σ(xi)

for each i



Review: The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.
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Input ypred, 
scalar

Output z, 
scalar

MSELoss Layer
Compute 

z = (ypred – ytrue)2

Input ytrue, 
scalar



CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and 

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()
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Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
Convolve kernel

with input

Params: Kernel



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()
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Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()
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Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch



Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to 

extract features
• Then use MLP to make final 

prediction

• Basic steps are still all the 
same
• Backpropagation still works

• Gradient descent needed to 
update all parameters
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Announcements

• HW1 grades out
• Please review the solutions posted on Brightspace

• Regrade requests open through next Tuesday, March 4

• HW2 due next Thursday, March 6

• Midterm exam Thursday, March 13
• Practice midterms posted online

• Section this week: Scikit-learn tutorial

• Reading group plan
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Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Word vectors
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• Goal: For each word w, learn vector 
vw that represents word’s meaning 
• Similar words should have similar 

vectors
• Different components of the vector 

may represent different properties of a 
word

• Why?
• Neural networks take vectors as 

inputs. To feed them sentences, need 
to represent each word as a vector

• Independently interesting to 
understand relationships between 
words

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]

Related to animals? Is a place



Visualizing word vectors

• Goal: For each word w, learn 
vector vw that represents 
word’s meaning 
• Similar words should have 

similar vectors

• Different components of the 
vector may represent different 
properties of a word
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A New “Building Block”
(6) Word Vector Layer

• Input w: A word (from our vocabulary)
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors for each 

word 

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector 

parameter vw of shape d
• |V| * d total parameters needed
• Think of this as a dictionary called word_vecs, where the 

keys are words & values are learned parameter vectors
• Can initialize using word2vec, or randomly
• Train them further with gradient descent to help final task

• In pytorch: nn.Embedding()
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Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)



Lexical Semantics

• Word vectors should capture lexical semantics
• Lexical = word-level

• Semantics = meaning

• What do we want to represent?
• Synonymy (car/automobile) or antonymy (cold/hot)

• Hypernymy/Hyponymy (animal/dog)

• Similarity (cat/dog, coffee/cup, waiter/menu)

• Various features

• Sentiment (positive/negative)

• Formality

• All sorts of properties (Is a city? Is an action that a person can do?)
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vcat vdog vhot …



The Distributional Hypothesis

• You hear a new word, ongchoi 
• Ongchoi is delicious sauteed with garlic. 

• Ongchoi is superb over rice.

• ...ongchoi leaves with salty sauces... 

• Compare with similar contexts:
• ...spinach sauteed with garlic over rice...

• ...chard stems and leaves are delicious... 

• ...collard greens and other salty leafy 
greens
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• Conclusion: ongchoi is probably a leafy green 
similar to spinach, chard, and collard greens

• Distributional Hypothesis: Words appearing in 
similar contexts have similar meanings!

• Firth 1957: “You Shall Know a Word by the 
Company It Keeps”



Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Word vectors as a learning problem

• Want to learn vector vw for each 
word w

• What makes a vector good?

• Idea: vw should help you predict 
which words co-occur with w
• Captures distribution of context 

words for w

• Think of it as N binary classification 
problems, where N is size of 
vocabulary
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vongchoi

“sauteed”? Yes
“rice”? Yes
“kicked”? No
“car”? No



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
• We don’t really care about these 

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences 

within sliding window
• Negative examples: Random samples
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… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

Word w



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
• We don’t really care about these 

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences 

within sliding window
• Negative examples: Random samples
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… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w



How to sample negatives?

• Choose a fixed ratio of negative:positive 
(e.g. 2)

• Baseline: Sample according to frequency of 
word p(w) in the data
• Not ideal because very common words (“the”) 

get sampled a lot

• Improvement: Sample according to α-
weighted frequency

• For α < 1, high-frequency words get down-
weighted

• Typically choose around α=.75

22

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w



word2vec model

• Parameters (all of dimension d):
• Word vector vw for each word (“features”—the actual word 

vectors)
• Context vector cw for each word (“classifier weights” for task 

corresponding to w as context)

• Goal: vw can be used by linear classifier to do any of 
the N “was this a context word” tasks

• Objective looks just like logistic regression:
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vcat vdog vhot …

ccat cdog chot …

word context
“features” 
for word

“weight” 
for context



Training word2vec

• Strategy: Gradient descent

• Gradient updates essentially same as logistic regression
• Gradient w.r.t. c holds v fixed, so it’s like v are fixed features

• Gradient w.r.t. v is symmetrical
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Examples where w’ = u
Same as logistic regression 

where vw is the input x

Examples where w = u
Same as logistic regression 

where cw’ is the input x



Is this a convex problem?

• Looks a lot like logistic regression…

• But it’s not convex!

• Why?
• In logistic regression, we only optimize w.r.t. 

weights, features are constant
• Now we optimize both at the same time!

• Fact to remember: f(x) = x1 * x2 is not 
convex
• Consider points [-1, 1] and [1, -1]
• f(x) = -1 at both points
• But at the midpoint [0, 0], f(x) = 0

• Corollary: We need to randomly initialize
• Must break symmetry, as in neural networks
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Both are optimization 
variables

f([-1,1]) = -1

f([1,-1]) = -1

f([0,0]) = 0



Word vectors vs. Context vectors

Word Vector Space Context Vector Space
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cat

horse

house zoo

chair
x1

“animal” 
direction

x2

“place” 
direction

x1

“animal-related” 
direction

x2

“place-related” 
direction

eat bite

address
north

pencil



word2vec overview

• Acquire large unsupervised text corpus

• Create positive examples for every word by using 
sliding window

• Create negative examples by randomly sampling 
context word from weighted word frequency

• Randomly initialize all v and c vectors

• Train on logistic regression-like loss with gradient 
descent

• Return v vectors
• c vectors not needed—just helpers
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vcat vdog vhot …

ccat cdog chot …



Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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tree

vine

Analogies in vector space

• Apple is to tree as grape is to…

• In vector space, resembles a 
parallelogram
• Same relationship between apple and 

tree holds between grape and vine

• vvine ≈ vtree – vapple + vgrape
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apple

grape

Represents the 
“grows on” relation

Query
word



Answering analogy queries

• Compute v = vtree – vapple + vgrape

• Find word w in vocabulary whose vw 
is most similar to v
• Common choice: Cosine similarity

 (= cosine of angle between x and y)

• Typically need to exclude words very 
similar to the query word (e.g. “grapes”)
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tree

v

apple

grape vine

θ



Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality 

reduction later!

• Roughly same difference 
between male/female versions 
of the same word
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Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality 

reduction later!

• Roughly same difference 
between base, comparative, 
and superlative forms of 
adjectives
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Outline

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Machine learning is a tornado

• …it picks up everything 
in its path

• Data has all sorts of 
associations we may 
not want to model
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What word associations are out there?

• What is programmer – man + woman?
• According to word vectors trained on news data, it’s homemaker

• Existing data has tons of correlations between occupation and gender

• word2vec doesn’t know what is a semantic relationship and what is 
a historical correlation
• “queen” is more related to “she” than “he” semantically

• “nurse” may co-occur more with “she” than “he” in available data but not a 
semantic relationship!
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Word vectors quantify gender stereotypes

• X-axis: Real percentage 
difference in workforce 
between women & men

• Y-axis: Embedding bias 
= difference of distance 
from male-related 
words and female-
related words

• Strong correlation!
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Conclusion

• Distributional hypothesis: Words that 
appear in similar contexts have similar 
meanings

• word2vec: Learn vectors by inventing a 
prediction problem (did this word-
context pair really occur in the text?)

• Vector arithmetic lets us complete 
relations

• Vectors capture both lexical semantics 
and historical biases

• Next time: Word vectors as a 
component of neural networks for 
processing text
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… lemon, a tablespoon of apricot jam, a pinch…

Word w

Window of radius 2



Extra slides, time permitting
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Peculiarities of language data

• Peculiarity #1: Text is not a numerical format
• Feature vector = list of numbers

• Image = 3xWxH grid of pixel brightness values

• Text = sequence of words, not numbers

• Peculiarity #2: Text is variable sized
• Feature vectors are always the same size for different examples

• Images can be cropped/rescaled to be the same size for all examples

• Text: Different examples have different # of words
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Feeding Words to a Neural Network

• Peculiarity #1: Words are not 
numerical

• Solution: Learn word vectors, feed 
word vector of each word to model!

• Original input: T words

• Vector input: T vectors, each of size d
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Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]
Text input:             A            zoo     elephant 
Vector input:

-0.4

1.4

-1.2

2.1

-1.4

3.2

2.1

-1.3

0.3



RNN “Building Blocks”
(6) Word Vector Layer

• Input w: A word (from our vocabulary)
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors for each 

word 

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector 

parameter vw of shape d
• Think of this as a dictionary called word_vecs, where the 

keys are words & values are learned parameter vectors
• Can initialize using word2vec, or randomly
• Train them further with gradient descent to help final task

• In pytorch: nn.Embedding()
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Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)



Handling variable length

• Peculiarity #2: Documents have 
different numbers of words
• Example 1: Amazing!

• Example 2: There are many issues 
with this movie, such as…

• Problem: In previous models, 
number of parameters depends 
on size of inputs

• Challenge: How can we use the 
same set of model parameters 
to handle inputs of any size? 
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Linear
regression

Input x
(vector of 
length d) Hidden layer 

“activations” z
(vector of length h)

Output
y

z1= .9

z2= .2

zh= .8

Each wi is of length d



Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time
• At each step, update the hidden state of 

the network
• Model parameters to do this update are 

same for each step
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Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of 
the same neural network

Output



A “Vanilla”/”Elman” RNN

• At each timestep t, run neural network that takes in 2 inputs 
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, 

word vectors 44

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear function of 
prev. hidden state

Linear function of 
current word vector

Same W’s & b for each timestep

question



RNN “Building Blocks”

(7) RNN Layer

• Input: List of vectors x1, …, xT, each of size din
• E.g., xt is word vector for t-th word in sentence
• Equivalent to a T x din matrix

• Output: List of vectors h1, …, ht, each of size dout
• dout: Dimension of hidden state
• Equivalent to a T x dout matrix

• Formula (Elman RNN):

• Parameters:
• Wh: Matrix of shape (dout, dout)
• Wx: Matrix of shape (dout, din)
• b: Vector of shape (dout,)
• h0: Vector of shape (dout,)

• In pytorch: nn.RNN(), etc.
45

Input x1, …, xT, each shape din

RNN Layer
Params: Wh, Wx, b, h0

Output h1, …, hT, each shape dout

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5
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