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Review: Convolutions

112 -1 0/{0j0]0]00 - Convolutional Layer
112 -1 ol110/0]/01l0O - Extract 1 feature for each window of input
by applying kernel
112]-1 OJT 1|11y  Output is computed as a dot product (linear
v
Kernel 0j1j0l0l0]0 operation) |
(K=3) olololollolo * Local Receptive Field: Each output cell is
- computed based on a small window of
Input the input image
31100 (5x6) « Weight Sharing: Same kernel used to
, A process each window of the input image
° 2|0 LO< input[1:4,2:5] * The kerner! def)i)nehs a cIassifieT (%.g., is there
i a moose here?) that gets applied to every
3|1]0]0 \ window of the image
Output (1, 2)-th

(5-3+1 x 6-3+1) element
=(3 x 4)



Review: Convolutional Neural Networks
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* Input -> Conv+RelLU + Pool -> Fully connected layer -> Output

« Convolutions at beginning to understand
each small window of image

 Fully connected layer at end to make overall prediction
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Review: The Basic “Building Blocks”

(1) Linear Layer Output y, shape (d, )
* Input x: Vector of dimension d.,

 Qutput y: Vector of dimension d Linear Layer

out

Compute
* Formula:y =Wx + Db y=Wx+b
* Parameters Params: W, b
« W:d,, x d,, matrix
« b: d,,, vector ‘

* In pytorch: nn.Linear() Input x, shape (d;,,)




Review: The Basic “Building Blocks”

(2) Non-linearity Layer
* [nput x: Any number/vector/matrix

 Qutput y: Number/vector/matrix of
same shape

 Possible formulas:
« Sigmoid: y = o(x), elementwise
« Tanh: y = tanh(x), elementwise
 Relu: y = max(x, 0), elementwise
« Parameters: None

« In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

Output y, same shape as x
1

Sigmoid Layer
Compute

y; = o(x;)
for eachii

|

Input x, any shape




Review: The Basic “Building Blocks”

Output z,
(3) Loss Layer scalar

* Inputs:
* Yored- Shape depends on task
* Yiue SCalar (e.g., correct regression value or class index)

« Output z: scalar

* Possible formulas:
» Squared |0SS: Y, is scalar, Z = (Ypreq = Yirue)?
- Softmax regression loss: y, .4 is vector of length C,

C 7

=1
Input y, e, Input y,....
« Parameters: None scal ;;ed Scalg;ue

* In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Compute
Z= (Ypred B ytrue)2




CNN “Building Blocks”

(4) Convolutional Layer Output y, shape (width’, height’, n_,)

* Input x: Tensor of dimension (width, height, n. )
 n,.: Number of input channels (e.g. 3 for RGB images)

« Output y: Tensor of dimension (width’, height’, n ) onvolutional Laye
- width’, height’: New width & height, depends on stride and Convolve kernel
padding with input

* n,,. Number of output channels

out*

« Formula: Convolve input with kernel
* Recall: This is in fact a linear operation ‘

« Parameters: Kernel params of shape (K, K, n,., n_;)
* In pytorch: nn.Conv2d()

Params: Kernel

Input x, shape (width, height, n..,)



CNN “Building Blocks”

(5) Max Pooling layer Output y, shape (width/2, height/2, n)

* Input x: Tensor of dimension
(width, height, n)

* n: Number of channels
« Qutput y: Tensor of dimension

Max Pool Layer
Compute max

(width/2, height/2, n) over each 2x2 patch
» Formula: In each 2x2 patch, compute

max
 Parameters: None ‘

e In pytorch: nn.MaxPoolzd() Input x, shape (width, height, n)



CNN “Building Blocks”

(5) Max Pooling layer Output y, shape (width/2, height/2, n)

* Input x: Tensor of dimension ‘
(width, height, n)

* n: Number of channels
« Qutput y: Tensor of dimension

Max Pool Layer
Compute max

(width/2, height/2, n) over each 2x2 patch
e 30 | O
8 112 2 | 0 | 2x2MaxPool |20]30 ‘
>
34|70 37| 4 112 37 Input x, shape (width, height, n)

RN 25 | 12




Building a CNN Model

gm—

* A generic CNN architecture /ﬂear Layer
« First use conv + relu + pool to Params:a@@

Max Pool Layer
« Backpropagation still works

» Gradient ded to RelLU Layer
updatecll parameters / Convolutional Layer \

Params:

extract features § ReLU Layer
 Then use MLP to make final > :
prediction x Linear Layer 1
. : Q Params:(w)(b’
* Basic steps are still all the =
same pd
©
5
()]
pa

Input x
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Announcements

« HW1 grades out
» Please review the solutions posted on Brightspace
« Regrade requests open through next Tuesday, March 4

« HW2 due next Thursday, March 6

» Midterm exam Thursday, March 13
 Practice midterms posted online

» Section this week: Scikit-learn tutorial
» Reading group plan




Outline

 Word vectors
« What do we want?
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Word vectors

» Goal: For each word w, learn vector Vector v,
v,, that represents word’s meaning A -0.4. 1.4, -1.2]
 Similar words should have similar
vectors Aa.rdvark [2.2,-1.8, 0.6]
- Different components of the vector Airport [0.7,0.3(3.1]
may represent different properties of a
word
Elephant [2.1,-1.3,0.3
« Why?
* Neural networks take vectors as
inputs. To feed them sentences, need 200 [2.1,-1.4{3.2]

 Independently interesting to
understand relationships between
words
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Visualizing word vectors

» Goal: For each word w, learn O $ :a1

-

vector v, that represents
word’s meaning T
« Similar words should have
similar vectors

 Different components of the
vector may represent different -

e als
A LAl

properties of a word .

S UEEL Y




A New “Building Block”

(6) Word Vector Layer
» Input w: A word (from our vocabulary) Output: Vector v,, of shape (d))
« Can also input list of words I
 QOutput: A vector of length d
« |If input is many words, output is list of vectors for each Word Vector Layer
word Params: v,, for each w in vocab
* Formula: Return word_vecs|[w] “
« Parameters:
* For each word w in vocabulary, there is a word vector
parameter v,, of shape d Input word w

V| * d total parameters needed

Think of this as a dictionary called word_vecs, where the
keys are words & values are learned parameter vectors

Can initialize using word2vec, or randomly
Train them further with gradient descent to help final task

In pytorch: nn.Embedding()




Lexical Semantics

» Word vectors should capture lexical semantics
 Lexical = word-level
« Semantics = meaning

» What do we want to represent? B B
« Synonymy (car/automobile) or antonymy (cold/hot) Veat Vdog  Vhot
« Hypernymy/Hyponymy (animal/dog)
« Similarity (cat/dog, coffee/cup, waiter/menu)

 Various features
« Sentiment (positive/negative)
« Formality
« All sorts of properties (Is a city? Is an action that a person can do?)




The Distributional Hypothesis

* You hear a new word, ongchoi  + Compare with similar contexts:

» Ongchoi is delicious sauteed with garlic. * ...spinach sauteed with garlic over rice...

* Ongchoi is superb over rice. - ...chard stems and leaves are delicious...

« ...ongchoi leaves with salty sauces... » ...collard greens and other salty leafy
greens

« Conclusion: ongchoi is probably a leafy green
similar to spinach, chard, and collard greens
 Distributional Hypothesis: Words appearing in
similar contexts have similar meanings!

« Firth 1957: “You Shall Know a Word by the
Company It Keeps”




Outline

e word2vec
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Word vectors as a learning problem

« Want to learn vector v,, for each

word w “sauteed”? Yes
4» “rice”? Yes
« What makes a vector good? ——— “kicked”? No
, T “car? No

* Idea: v,, should help you predict

which words co-occur with w Vongehol

 Captures distribution of context
words for w

 Think of it as N binary classification
problems, where N is size of
vocabulary

19



Creating a dataset

Word w

... lemon, altablespoon|of apricotliam, a|pinch...
\

* Given: Raw dataset of text
(unsupervised)

| « We will create N “fake” supervised
Window of radius 2 learning problems!
T ) ity o « We don't really care about these
Word w (“input”) Context w’ (“task”) y (label) supervised Iegrning problems
apricot tablespoon +1 - We just care that we learn good vectors
apricot of + » Task i: Did word w co-occur with the i-
apricot jam +1 th word?
apricot a +1 - Positive examples: Real co-occurrences

within sliding window
* Negative examples: Random samples

20



Creating a dataset

Word w

... lemon, altablespoon|of apricotliam, a|pinch...
\

* Given: Raw dataset of text
(unsupervised)

| « We will create N “fake” supervised
Window of radius 2 learning problems!
et ) ity L  We don't really care about these
Word w (“input”) Context w’ (“task”) y (label) supervised learning problems
apricot tablespoon +1 - We just care that we learn good vectors
apricot of + » Task i: Did word w co-occur with the i-
apricot jam +1 th word?
apricot a +1 - Positive examples: Real co-occurrences

within sliding window

apricot seven -1 :

P * Negative examples: Random samples
apricot forever -1
apricot dear -1

apricot if -1

21




How to sample negatives?

Word w . . . N
. lemon, altablespoon|ofiapricot jam] a|pinch... ?ef.\é).og)e a fixed ratio of negative:positive
| Y }  Baseline: Sample according to frequency of

Window of radius 2 word p(w) in the data
« Not ideal because very common words (“the”)

Word w (“input”) Context w’ (“task”) y (label) get sampled a lot

apricot tablespoon +1 - Improvement: Sample according to a-
apricot of +1 weighted frequency

ot , 'I (w) count (w)®

+ o(w) =

APTED Jam b Y wr ey count(w’)e
apricot a +1 ,

, « For a< 1, high-frequency words get down-
apricot seven -1 weighted
apricot forever -1 » Typically choose around a=.75
apricot dear -1
apricot if -1
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word2vec model

« Parameters (all of dimension d):

« Word vector v, for each word (“features”—the actual word
vectors)

« Context vector ¢, for each word (“classifier weights” for task
corresponding to w as context)

 Goal: v, can be used by linear classifier to do any of
the N “was this a context word” tasks

 Objective looks just like logistic regression:
L(v,e) = Y —1ogo(y- vycu)

(w,w’,y)
/

word context features weight

for word for context

Ccat

Cdog

Chot

23



Training word2vec

» Strategy: Gradient descent

 Gradient updates essentially same as logistic regression

* Gradient w.r.t. ¢ holds v fixed, so it’s like v are fixed features
Ve, L(v,c) = Z —o(y-v, cy) Y - Uy
(w,w’,y):w' =u

, Same as logistic regression
Examples where w' = u

where v, is the input x
 Gradient w.r.t. vis symmetrical

-
Vo, L(v,c) = Z —0(y - v, Cuwr ) " Y+ Coyr
(w,w’,y):w=u Same as logistic regression
Examples where w = u where ¢, is the input x

24



Is this a convex problem?

« Looks a lot like logistic regression... Lv,e)= Y —logo(y v,cy)
 But it's not convex! (w,w’,y)

* Why? Both are optimization

* In logistic regression, we only optimize w.r.t. variables
weights, features are constant :s' y S—

« Now we optimize both at the same time!

* Fact to remember: f(x) = x; * X, is not _ N
convex f([0,0)) =0

« Consider points [-1, 1] and [1, -1] e of @
 f(x) =-1 at both points [

« But at the midpoint [0, 0], f(x) =0 IRETGED

AT
« Corollary: We need to randomly initialize \ /’/‘

* Must break symmetry, as in neural networks S

25




Word vectors vs. Context vectors

Word Vector Space Context Vector Space
X
X2 2 A
“« ” “ |aCe're|ated" addreSS
place” pouse prazeTe
direction #00 direction nfyrth
chdir horse: LEW” eat blte:
cat X X4
“animal” “animal-related”

direction direction

26




word2vec overview

» Acquire large unsupervised text corpus

» Create positive examples for every word by using
sliding window

 Create negative examples by randomly sampling
context word from weighted word frequency

« Randomly initialize all v and c vectors

 Train on logistic regression-like loss with gradient
descent

* Return v vectors
 c vectors not needed—just helpers

Veat vdog

Ceat Cdog

vhot

Chot

27



Outline

 Solving analogies

28



Analogies in vector space

» Apple is to tree as grape is to...

* In vector space, resembles a
parallelogram

« Same relationship between apple and
tree holds between grape and vine

vine = Viree ~ apple}+ Vgrape

\
|
Represents the Query
“grows on” relation  word

"4

tree
apple ./.
vine
grape ‘/.

29



Answering analogy queries

apple * Vgrape

 Find word w in vocabulary whose v,
Is most similar to

« Common choice: Cosine similarity

« Compute v =v, ., —

T

: LY
O = el

(= cosine of angle between x and y)

 Typically need to exclude words very
similar to the query word (e.g. “grapes”)

30



Visualizing Analogies

— ——— » Figure: Dimensionality reduction
- to 2D, then plot words with
‘ known relationship

+ countess
03+ = aunt | /' +duchess
[

N LT e « We'll talk about dimensionality
N e A reduction later!
of 1 entn b . * Roughly same difference

T P : : between male/female versions

! brother f d : ’,f {duke
f C - f the same word
a _, | 0] e Same WOr
/ I | {emperor
-0.3F -
/ / I
/ / I
0.4+ i ! |
{sir [
_05F {man 'king
L L 1 L 1 1 1 1 | 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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Visualizing Analogies

e  Figure: Dimensionality reduction
e | to 2D, then plot words with
known relationship

0.3} .7 “shoter . . .
« We'll talk about dimensionality
02f - reduction later!

— « Roughly same difference
ol | between base, comparative,
R == = m S e and superlative forms of

strong « ~
=01 lDUd"’d_I,__ R - . .
-~ clearer - T T 7 7 = = = — —clearest d ‘t
gl T T = = = e a JeC |VeS
P — — = softest
-0.21- clear-’:/,—"' — — — — -
soft < < darker ~ T — — —-darkest
dark < i
-0.3 | | 1 L I 1 I | |
-0.4 -0.3 -0.2 =01 0 0.1 0.2 0.3 0.4 0.5 0.6
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Outline

e Bias in word vectors
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Machine learning is a tornado

e ...It picks up everything
in its path
 Data has all sorts of

associations we may
not want to model
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What word associations are out there?

 What is programmer — man + woman?
« According to word vectors trained on news data, it's homemaker
 Existing data has tons of correlations between occupation and gender

» word2vec doesn’t know what is a semantic relationship and what is
a historical correlation
* “gueen” is more related to “she” than “he” semantically

* “nurse” may co-occur more with “she” than “he” in available data but not a
semantic relationship!
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Word vectors quantify gender stereotypes

0.15

- - X-axis: Real percentage
" difference in workforce
Housekeeper Librarian between women & men

» —+ Y-axis: Embedding bias

Dancer -

v~ = difference of distance
. from male-related
0.00 . « [ . . words and female-

@ - - = @

- * = : | ety F€lated words

0.10

0.05

Women Bias

—0.05
®

= ‘ ‘ « Strong correlation!

(<]
o — & ®
= = 2 . @

i Engineer
k)
0.10 e

S & X
Carpenter Mechanic

0-1950 75 ~50 —25 0 25 50

2 75 100
Women Occupation % Difference
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Conclusion

- Distributional hypothesis: Words that Word w
appear in similar contexts have similar .. lemon, ajtablespoon|of apricot|/'am, alpinch...
meanings }

« word2vec: Learn vectors by inventing a . ! .
prediction problem (did this word- Window of radius 2
context pair really occur in the text?)

« Vector arithmetic lets us complete , _
relations oaf 1 caum S

- Vectors capture both lexical semantics oo
and historical biases L ot

* Next time: Word vectors as a N Pl

-0.2r-

component of neural networks for
processing text '

05 {man {king

05r rheiress

L L 1 L 1 I 1 I | L
-05 -04 -03 -02 -01 0 0.1 0.2 0.3 0.4 0.5
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Extra slides, time permitting




Peculiarities of language data

 Peculiarity #1: Text is not a numerical format
» Feature vector = list of numbers
 Image = 3xWxH grid of pixel brightness values
« Text = sequence of words, not numbers

 Peculiarity #2: Text is variable sized
 Feature vectors are always the same size for different examples
* Images can be cropped/rescaled to be the same size for all examples
« Text: Different examples have different # of words
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Feeding Words to a Neural Network

 Peculiarity #1: Words are not Vectorv,,
numerical A [-0.4,1.4,-1.2]

 Solution: Learn word vectors, feed Aardvark [2.2,-1.8,0.6]
word vector of each word to model! Airport [0.7,0.3, 3.1]

 Original input: T words

« Vector input: T vectors, each of size d Elephant [2.1,-1.3,0.3

Text input: A zoo elephant 200 [21,-14,3.2]

Vector input: [ 54 21 2.1

1.4 -1.4 -1.3
-1.2 3.2 0.3
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RNN “Building Blocks”

(6) Word Vector Layer

Input w: A word (from our vocabulary)
« Can also input list of words

Output: A vector of length d

- If input is many words, output is list of vectors for each
word

Formula: Return word_vecs[w]

Parameters:

* For each word w in vocabulary, there is a word vector
parameter v,, of shape d

* Think of thls as a dictionary called word_vecs, where the
keys are words & values are learned parameter vectors

 Caninitialize using word2vec, or randomly
 Train them further with gradient descent to help final task

In pytorch: nn.Embedding()

Output: Vector v,, of shape (d,)

|

Word Vector Layer
Params: v,, for each w in vocab

A

Input word w




Handling variable length

Each w; is of length d

 Peculiarity #2: Documents have 9
different numbers of words ) Linear
* Example 1: Amazing! | regression  Output
* Example 2: There are many issues Tate Y
with this movie, such as... .
* Problem: In previous models, Wy @ 4,
num.ber of.parameters depends (vector of z=|.8
on size of inputs length d) Hidden layer
 Challenge: How can we use the “activations” z
same set of model parameters (vector of length h)

to handle inputs of any size?

42



Recurrent Neural Networks (RNNs)

Initial hidden  Hidden Hidden Hidden Final hidden
state h, state h; state h, state h, state h; Output
(el \ (— N (— | ) _’...(_’ —
\_ T) - L - TJ \ TJ
x / question
* Idea: Recurrence! Each step is an application of

- “Read” the input one word at a time the same neural network

« At each step, update the hidden state of
the network

* Model parameters to do this update are
same for each step

43



A “Vanilla”/”Elman” RNN

Initial hidden  Hidden Hidden Hidden Final hidden
state h, state h; state h, state h, state h; Output
—— T \N— [\ — || —— (— [ \——

T\ L\ T) g TJ

question
Same W’'s & b for each timestep

ht — tanh (@ht—l —l—@fl)t @
« At each timestep t, run neural network that takes in 2 inputs \ ) -

(or 1 big input, by concatenation) Linear function 'of Linear function of
« Previous hidden state h, prev. hidden state  current word vector
« Vector for current word x,

 Learn linear function of both inputs, add bias, apply non-linearity

« Parameters: Recurrence params (W,, W,, b), initial hidden state h,,
word vectors

44



RNN “Building Blocks”

(7) RNN Layer Output h, ..., hy, each shape d,

* Input: List of vectors x,, ..., X1, each of size d. hy hy hy hy hs

. E.g., x, is word vector for t-th word in sentence ‘ ‘ ‘ ‘ ‘

« Equivalentto a T x d,, matrix
 Qutput: List of vectors h,, .., h,, each of size d RNN Layer

* d,, Dimension of hidden state Params: W,, W,, b, h,

« Equivalentto a T x d,, matrix
« Formula (EIman RNN): h; = tanh (Wyhi—1 + Wz, + b) ‘ ‘ ‘ ‘ ‘
« Parameters: X;  Xo  Xg X4 Xg

» W, Matrix of shape (dg, dou) Input X, ..., X, each shape d._

- W,: Matrix of shape (d,, d;,)
* b: Vector of shape (d,,)
« h,: Vector of shape (d,,,)

* In pytorch: nn.RNN(), etc.
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