Finishing Computer Vision; Word Vectors \& word2vec

Robin Jia

USC CSCI 467, Spring 2024
February 22, 2024
With a lot borrowed from Jurafsky \& Martin, "Speech and Language Processing"
https://web.stanford.edu/~jurafsky/slp3/

Review: Convolutions

- Convolutional Layer
- Extract 1 feature for each window of input by applying kernel
- Output is computed as a dot product (linear operation)
- Local Receptive Field: Each output cell is computed based on a small window of the input image
- Weight Sharing: Same kernel used to process each window of the input image
- The kernel defines a classifier (e.g., is there a moose here?) that gets applied to every window of the image

Review: Convolutional Neural Networks

- Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
- Convolutions at beginning to understand each small window of image
- Fully connected layer at end to make overall prediction

Review: The Basic "Building Blocks"

(1) Linear Layer

- Input x: Vector of dimension $\mathrm{d}_{\text {in }}$
- Output y : Vector of dimension $d_{\text {out }}$
- Formula: $\mathrm{y}=\mathrm{Wx}+\mathrm{b}$
- Parameters
- W: $\mathrm{d}_{\text {out }} \times \mathrm{d}_{\text {in }}$ matrix
- b: $d_{\text {out }}$ vector
- In pytorch: nn.Linear()

Output y , shape $\left(\mathrm{d}_{\text {out }}\right)$

Review: The Basic "Building Blocks"

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
- Sigmoid: $y=\sigma(x)$, elementwise
- Tanh: $\mathrm{y}=\tanh (\mathrm{x})$, elementwise
- Relu: $\mathrm{y}=\max (\mathrm{x}, 0)$, elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

Output y, same shape as x

Review: The Basic "Building Blocks"

(3) Loss Layer

Output z, scalar

- Inputs:
- $\mathrm{y}_{\text {pred }}$: shape depends on task
- $y_{\text {true }}$: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:
- Squared loss: $y_{\text {pred }}$ is scalar, $z=\left(y_{\text {pred }}-y_{\text {true }}\right)^{2}$
- Softmax regression loss: $y_{\text {pred }}$ is vector of length C, $z=-\left(y_{\text {pred }}\left[y_{\text {true }}\right]-\log \sum_{i=1}^{C} \exp \left(y_{\text {pred }}[i]\right)\right)$
- Parameters: None

- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

CNN "Building Blocks"

(4) Convolutional Layer

Output y , shape (width', height', $\mathrm{n}_{\text {out }}$)

- Input x: Tensor of dimension (width, height, $\mathrm{n}_{\text {in }}$)
- n_{in} : Number of input channels (e.g. 3 for RGB images)
- Output y: Tensor of dimension (width', height', $\mathrm{n}_{\text {out }}$)
- width', height': New width \& height, depends on stride and padding
- $\mathrm{n}_{\text {out }}$: Number of output channels
- Formula: Convolve input with kernel
- Recall: This is in fact a linear operation
- Parameters: Kernel params of shape ($\mathrm{K}, \mathrm{K}, \mathrm{n}_{\mathrm{in},}, \mathrm{n}_{\text {out }}$)
- In pytorch: nn.Conv2d()

Input x, shape (width, height, n_{in})

CNN "Building Blocks"

(5) Max Pooling layer

- Input x: Tensor of dimension (width, height, n)
- n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)
- Formula: In each 2×2 patch, compute max
- Parameters: None
- In pytorch: nn.MaxPool2d()

Output y , shape (width/2, height/2, n)

Input x , shape (width, height, n)

CNN "Building Blocks"

(5) Max Pooling layer

- Input x: Tensor of dimension (width, height, n)
- n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)

12	20	30	0			
8	12	2	0			
34	70	37	4	$\xrightarrow{2 \times 2 \text { Max-Pool }}$	20	30
:---:	:---:					
112	37					

Output y , shape (width/2, height/2, n)

Building a CNN Model

- A generic CNN architecture
- First use conv + relu + pool to extract features
- Then use MLP to make final prediction
- Basic steps are still all the same
- Backpropagation still works
- Gradient descent needed to update@all parameters

Outline

- Computer vision tasks
- Word vectors
- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Image Classification

- ImageNet dataset: 14 million images, 1000 labels
- CNNs do very well at these tasks!

Object Detection

- Task: Identify objects, provide bounding boxes, and label them
- One strategy: Propose candidate bounding boxes, then classify each box (possibly as nothing)

Semantic Segmentation

- Task: Predict a class label for each pixel

\square Road	Sidewalk	Building	Fence	
\square	Vole		Vegetation	\square

Semantic Segmentation

- One strategy: Encoder-Decoder ("U-net")
- First do conv + ReLU + pooling as before
- Then do upsampling + conv + ReLU to generate an output of original size

Image Generation

- Segmentation: "generates" a 2-D grid of predictions
- This is almost like generating
 an image
- Can we use CNNs to generate new images?

Diffusion Models

- Training: Add noise to good images, train neural network to undo the noise
- Input: Noisy image
- Output: Less noisy image
- Architecture: Can also use U-Net
- Objective: Per-pixel regression loss

Add noise to picture, create training data

Train model to reverse the process

Diffusion Models

- Training: Add noise to good images, train neural network to undo the noise
- Input: Noisy image
- Output: Less noisy image
- Architecture: Can also use U-Net
- Objective: Per-pixel regression loss

Add noise to picture, create training data

Train model to reverse the process

Diffusion Models

- Training: Add noise to good images, train neural network to undo the noise
- Input: Noisy image
- Output: Less noisy image
- Architecture: Can also use U-Net
- Objective: Per-pixel regression loss

Add noise to picture, create training data

Train model to reverse the process

Diffusion Models

- Training: Add noise to good images, train neural network to undo the noise
- Input: Noisy image
- Output: Less noisy image
- Architecture: Can also use U-Net
- Objective: Per-pixel regression loss
- Test-time: Start from pure noise, apply the neural network many times to create an image!
- How to input a caption? More on this later...

Test time: Model converts noise to images over many iterations

Diffusion Model Generated Images

Announcements

- HW1 Regrades: Open until next Tuesday, February 27
- HW2 Due Thursday, February 29
- Midterm exam Thursday, March 7
- In-class, 80 minutes in SLH 100
- Allowed one double-sided 8.5×11 sheet of notes
- Practice Exams from past 2 semester will be released soon
- Section tomorrow: Sci-kit learn

Outline

- Computer vision tasks
- Word vectors
- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Word vectors

- Goal: For each word w, learn vector v_{w} that represents word's meaning
- Similar words should have similar vectors
- Different components of the vector may represent different properties of a word
-Why?
- Neural networks take vectors as inputs. To feed them sentences, need to represent each word as a vector

Word w	Vector \boldsymbol{v}_{w}
A	$[-0.4,1.4,-1.2]$
Aardvark	$[2.2,-1.8,0.6]$
Airport	$[0.7,0.3,3.1]$
\ldots	
Elephant	$[2.1,-1.3,0.3$
\ldots	
Zoo	$[2.1,-1.4] 3.2]$

Related to animals? Is a place

- Independently interesting to understand relationships between words

Lexical Semantics

- Word vectors should capture lexical semantics
- Lexical = word-level
- Semantics = meaning
-What do we want to represent?
- Synonymy (car/automobile) or antonymy (cold/hot)

- Hypernymy/Hyponymy (animal/dog)
- Similarity (cat/dog, coffee/cup, waiter/menu)
- Various features
- Sentiment (positive/negative)
- Formality
- All sorts of properties (Is a city? Is an action that a person can do?)

The Distributional Hypothesis

- You hear a new word, ongchoi
- Ongchoi is delicious sauteed with garlic.
- Ongchoi is superb over rice.
- ...ongchoi leaves with salty sauces...
- Compare with similar contexts:
- ...spinach sauteed with garlic over rice...
- ...chard stems and leaves are delicious...
- ...collard greens and other salty leafy greens
- Conclusion: ongchoi is probably a leafy green similar to spinach, chard, and collard greens
- Distributional Hypothesis: Words appearing in similar contexts have similar meanings!
- Firth 1957: "You Shall Know a Word by the Company It Keeps"

Outline

- Computer vision tasks
- Word vectors
- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Word vectors as a learning problem

- Want to learn vector v_{w} for each word w
-What makes a vector good?
- Idea: v_{w} should help you predict which words co-occur with w
- Captures distribution of context words for w
- Think of it as N binary classification problems, where N is size of vocabulary

Creating a dataset

... lemon, a ta	Word w	pinch...
	tablespoon of Window of radius 2	
Word w ("in	(input") Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	a	+1

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
- We don't really care about these supervised learning problems
- We just care that we learn good vectors
- Task i: Did word w co-occur with the ith word?
- Positive examples: Real co-occurrences within sliding window
- Negative examples: Random samples

Creating a dataset

Word $w($ "input")	Context w^{\prime} ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	a	+1
apricot	seven	-1
apricot	forever	-1
apricot	dear	-1
apricot	if	-1

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
- We don't really care about these supervised learning problems
- We just care that we learn good vectors
- Task i: Did word w co-occur with the ith word?
- Positive examples: Real co-occurrences within sliding window
- Negative examples: Random samples

How to sample negatives?

- Choose a fixed ratio of negative:positive (e.g. 2)
- Baseline: Sample according to frequency of word $p(w)$ in the data
- Not ideal because very common words ("the") get sampled a lot
- Improvement: Sample according to $a-$ weighted frequency

$$
p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime} \in V} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}
$$

- For $a<1$, high-frequency words get downweighted
- Typically choose around $a=.75$

word2vec model

- Parameters (all of dimension d):
- Word vector v_{w} for each word ("features"-the actual word vectors)
- Context vector c_{w} for each word ("classifier weights" for task corresponding to w as context)

- Goal: v_{w} can be used by linear classifier to do any of the N "was this a context word" tasks
- Objective looks just like logistic regression:

$$
L(v, c)=\sum_{\text {word context }}^{\substack{\left(w, w^{\prime}, y\right)}} 0 \log \sigma\left(y \cdot v_{w}^{\top} c_{w_{k}^{\prime}}\right)
$$

Training word2vec

- Strategy: Gradient descent
- Gradient updates essentially same as logistic regression
- Gradient w.r.t. c holds v fixed, so it's like v are fixed features

$$
\nabla_{c_{u}} L(v, c)=\sum_{\substack{\left(w, w^{\prime}, y\right): w^{\prime}=u \\
\text { Examples where } \mathrm{w}^{\prime}=u}}-\sigma\left(y \cdot v_{w}^{\top} c_{u}\right) \cdot y \cdot v_{w} . \begin{gathered}
\text { Same as logistic regression } \\
\text { where } v_{w} \text { is the input x }
\end{gathered}
$$

- Gradient w.r.t. v is symmetrical

$$
\begin{gathered}
\nabla_{v_{u}} L(v, c)=\sum_{\substack{\left(w, w^{\prime}, y\right): w=u \\
\text { Examples where } \mathrm{w}=\mathrm{u}}}-\sigma\left(y \cdot v_{u}^{\top} c_{w^{\prime}}\right) \cdot y \cdot c_{w^{\prime}} \\
\text { Same as logistic regression } \\
\text { where } c_{w^{\prime}} \text { is the input } \mathrm{x}
\end{gathered}
$$

Is this a convex problem?

- Looks a lot like logistic regression...
- But it's not convex!
- Why?
- In logistic regression, we only optimize w.r.t. weights, features are constant
- Now we optimize both at the same time!
- Fact to remember: $f(x)=x_{1}$ * x_{2} is not convex
- Consider points $[-1,1]$ and $[1,-1]$
- $f(x)=-1$ at both points
- But at the midpoint $[0,0], \mathrm{f}(\mathrm{x})=0$
- Corollary: We need to randomly initialize
- Must break symmetry, as in neural networks

word2vec overview

- Acquire large unsupervised text corpus
- Create positive examples for every word by using sliding window
- Create negative examples by randomly sampling context word from weighted word frequency
- Randomly initialize all v and c vectors
- Train on logistic regression-like loss with gradient
 descent
- Return v vectors
- c vectors not needed-just helpers

Outline

- Computer vision tasks
- Word vectors
-What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Analogies in vector space

- Apple is to tree as grape is to...
- In vector space, resembles a parallelogram
- Same relationship between apple and tree holds between grape and vine
- $V_{\text {vine }} \approx \underbrace{V_{\text {tree }}-V_{\text {apple }}}+V_{\text {grape }}$

Represents the Query "grows on" relation word

Answering analogy queries

- Compute $v=v_{\text {tree }}-v_{\text {apple }}+v_{\text {grape }}$
- Find word w in vocabulary whose v_{w} is most similar to v
- Common choice: Cosine similarity

$$
\operatorname{cossim}(x, y)=\frac{x^{\top} y}{\|x\|\|y\|}
$$

(= cosine of angle between x and y)

- Typically need to exclude words very similar to the query word (e.g. "grapes")

Visualizing Analogies

- Figure: Dimensionality reduction to 2D, then plot words with known relationship
- We'll talk about dimensionality reduction later!
- Roughly same difference between male/female versions of the same word

Visualizing Analogies

- Figure: Dimensionality reduction to 2D, then plot words with known relationship
- We'll talk about dimensionality reduction later!
- Roughly same difference between base, comparative, and superlative forms of adjectives

Outline

- Computer vision tasks
- Word vectors
-What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Machine learning is a tornado

- ...it picks up everything in its path
- Data has all sorts of associations we may not want to model

What word associations are out there?

- What is programmer - man + woman?
- According to word vectors trained on news data, it's homemaker
- Existing data has tons of correlations between occupation and gender
- word2vec doesn't know what is a semantic relationship and what is a historical correlation
- "queen" is more related to "she" than "he" semantically
- "nurse" may co-occur more with "she" than "he" in available data but not a semantic relationship!

Word vectors quantify gender stereotypes

- X-axis: Real percentage difference in workforce between women \& men
- Y-axis: Embedding bias = difference of distance from male-related words and femalerelated words
- Strong correlation!

Conclusion

- Distributional hypothesis: Words that appear in similar contexts have similar meanings
- word2vec: Learn vectors by inventing a prediction problem (did this wordcontext pair really occur in the text?)
- Vector arithmetic lets us complete relations
- Vectors capture both lexical semantics and historical biases
- Next time: Word vectors as a component of neural networks for processing text

