
Finishing Computer Vision;
Word Vectors & word2vec

Robin Jia
USC CSCI 467, Spring 2024

February 22, 2024

With a lot borrowed from Jurafsky & Martin, “Speech and Language Processing”
https://web.stanford.edu/~jurafsky/slp3/ 

https://web.stanford.edu/~jurafsky/slp3/


Review: Convolutions

• Convolutional Layer
• Extract 1 feature for each window of input 

by applying kernel
• Output is computed as a dot product (linear 

operation)

• Local Receptive Field: Each output cell is 
computed based on a small window of 
the input image

• Weight Sharing: Same kernel used to 
process each window of the input image
• The kernel defines a classifier (e.g., is there 

a moose here?) that gets applied to every 
window of the image

2

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input
(5 x 6)

Output
(5-3+1 x 6-3+1)

=(3 x 4)

(1, 2)-th 
element

input[1:4,2:5]



Review: Convolutional Neural Networks

• Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
• Convolutions at beginning to understand

each small window of image
• Fully connected layer at end to make overall prediction

3



Review: The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()

4

Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute 
y = Wx + b

Params: W, b



Review: The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of 
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(), 
nn.functional.relu(), etc.

5

Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute 
yi = σ(xi)

for each i



Review: The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

6

Input ypred, 
scalar

Output z, 
scalar

MSELoss Layer
Compute 

z = (ypred – ytrue)2

Input ytrue, 
scalar



CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and 

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()

7

Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
Convolve kernel

with input

Params: Kernel



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()

8

Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()

9

Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch



Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to 

extract features
• Then use MLP to make final 

prediction

• Basic steps are still all the 
same
• Backpropagation still works

• Gradient descent needed to 
update all parameters

10

Linear Layer 2
Params: w2, b2

Input x

ReLU Layer

Linear Layer 1
Params: w1, b1

N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Convolutional Layer
Params: Kernel

Max Pool Layer

ReLU Layer



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

11



Image Classification

12

• ImageNet dataset: 14 
million images, 1000 
labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

13Source: https://www.eff.org/files/AI-progress-metrics.html 

• 2012: AlexNet wins 
ImageNet 
challenge, marks 
start of deep 
learning era (and is 
a convolutional 
neural network)

• 2016: Machine 
learning surpasses 
human accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy: 
Propose 
candidate 
bounding boxes, 
then classify each 
box (possibly as 
nothing)

14



Semantic Segmentation

• Task: Predict a class label 
for each pixel

15



Semantic Segmentation

• One strategy: Encoder-Decoder (“U-net”)
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an 
output of original size

16



Image Generation

• Segmentation: 
“generates” a 2-D 
grid of 
predictions
• This is almost 

like generating 
an image

• Can we use
CNNs to
generate new 
images?

17



Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

18

Add noise to picture, create training data

Train model to reverse the process



Diffusion Models

19

Add noise to picture, create training data

Train model to reverse the process

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models

20

Add noise to picture, create training data

Train model to reverse the process

Noisy
Image

Less Noisy
Image

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

• Test-time: Start from pure noise, apply 
the neural network many times to 
create an image!

• How to input a caption? More on this 
later…

21

Test time: Model converts noise to 
images over many iterations



Diffusion Model Generated Images

22
Denoising Diffusion Probabilistic Models. Jonathan Ho, Ajay Jain, and Pieter Abbeel. NeurIPS 2020.



Announcements

• HW1 Regrades: Open until next Tuesday, February 27

• HW2 Due Thursday, February 29

• Midterm exam Thursday, March 7
• In-class, 80 minutes in SLH 100

• Allowed one double-sided 8.5x11 sheet of notes

• Practice Exams from past 2 semester will be released soon

• Section tomorrow: Sci-kit learn

23



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

24



Word vectors

25

• Goal: For each word w, learn vector 
vw that represents word’s meaning 
• Similar words should have similar

vectors
• Different components of the vector 

may represent different properties of a 
word

• Why?
• Neural networks take vectors as 

inputs. To feed them sentences, need 
to represent each word as a vector

• Independently interesting to 
understand relationships between 
words

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]

Related to animals? Is a place



Lexical Semantics

• Word vectors should capture lexical semantics
• Lexical = word-level

• Semantics = meaning

• What do we want to represent?
• Synonymy (car/automobile) or antonymy (cold/hot)

• Hypernymy/Hyponymy (animal/dog)

• Similarity (cat/dog, coffee/cup, waiter/menu)

• Various features

• Sentiment (positive/negative)

• Formality

• All sorts of properties (Is a city? Is an action that a person can do?)

26

vcat vdog vhot …



The Distributional Hypothesis

• You hear a new word, ongchoi
• Ongchoi is delicious sauteed with garlic. 

• Ongchoi is superb over rice.

• ...ongchoi leaves with salty sauces... 

• Compare with similar contexts:
• ...spinach sauteed with garlic over rice...

• ...chard stems and leaves are delicious... 

• ...collard greens and other salty leafy 
greens

27

• Conclusion: ongchoi is probably a leafy green 
similar to spinach, chard, and collard greens

• Distributional Hypothesis: Words appearing in 
similar contexts have similar meanings!

• Firth 1957: “You Shall Know a Word by the 
Company It Keeps”



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

28



Word vectors as a learning problem

• Want to learn vector vw for each 
word w

• What makes a vector good?

• Idea: vw should help you predict 
which words co-occur with w
• Captures distribution of context 

words for w

• Think of it as N binary classification 
problems, where N is size of 
vocabulary

29

vongchoi

“sauteed”? Yes
“rice”? Yes
“kicked”? No
“car”? No



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
• We don’t really care about these 

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences 

within sliding window
• Negative examples: Random samples

30

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

Word w



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
• We don’t really care about these 

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences 

within sliding window
• Negative examples: Random samples

31

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w



How to sample negatives?

• Choose a fixed ratio of negative:positive
(e.g. 2)

• Baseline: Sample according to frequency of 
word p(w) in the data
• Not ideal because very common words (“the”) 

get sampled a lot

• Improvement: Sample according to α-
weighted frequency

• For α < 1, high-frequency words get down-
weighted

• Typically choose around α=.75

32

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

apricot seven -1

apricot forever -1

apricot dear -1

apricot if -1

Word w



word2vec model

• Parameters (all of dimension d):
• Word vector vw for each word (“features”—the actual word 

vectors)
• Context vector cw for each word (“classifier weights” for task 

corresponding to w as context)

• Goal: vw can be used by linear classifier to do any of 
the N “was this a context word” tasks

• Objective looks just like logistic regression:

33

vcat vdog vhot …

ccat cdog chot …

word context
“features” 
for word

“weight” 
for context



Training word2vec

• Strategy: Gradient descent

• Gradient updates essentially same as logistic regression
• Gradient w.r.t. c holds v fixed, so it’s like v are fixed features

• Gradient w.r.t. v is symmetrical

34

Examples where w’ = u
Same as logistic regression 

where vw is the input x

Examples where w = u
Same as logistic regression 

where cw’ is the input x



Is this a convex problem?

• Looks a lot like logistic regression…

• But it’s not convex!

• Why?
• In logistic regression, we only optimize w.r.t.

weights, features are constant
• Now we optimize both at the same time!

• Fact to remember: f(x) = x1 * x2 is not 
convex
• Consider points [-1, 1] and [1, -1]
• f(x) = -1 at both points
• But at the midpoint [0, 0], f(x) = 0

• Corollary: We need to randomly initialize
• Must break symmetry, as in neural networks

35

Both are optimization 
variables

f([-1,1]) = -1

f([1,-1]) = -1

f([0,0]) = 0



word2vec overview

• Acquire large unsupervised text corpus

• Create positive examples for every word by using 
sliding window

• Create negative examples by randomly sampling 
context word from weighted word frequency

• Randomly initialize all v and c vectors

• Train on logistic regression-like loss with gradient 
descent

• Return v vectors
• c vectors not needed—just helpers

36

vcat vdog vhot …

ccat cdog chot …



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

37



tree

vine

Analogies in vector space

• Apple is to tree as grape is to…

• In vector space, resembles a 
parallelogram
• Same relationship between apple and 

tree holds between grape and vine

• vvine ≈ vtree – vapple + vgrape

38

apple

grape

Represents the 
“grows on” relation

Query
word



Answering analogy queries

• Compute v = vtree – vapple + vgrape

• Find word w in vocabulary whose vw

is most similar to v
• Common choice: Cosine similarity

(= cosine of angle between x and y)

• Typically need to exclude words very 
similar to the query word (e.g. “grapes”)

39

tree

v

apple

grape vine

θ



Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality

reduction later!

• Roughly same difference 
between male/female versions 
of the same word

40



Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality 

reduction later!

• Roughly same difference 
between base, comparative, 
and superlative forms of 
adjectives

41



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors

42



Machine learning is a tornado

• …it picks up everything 
in its path

• Data has all sorts of 
associations we may 
not want to model

43



What word associations are out there?

• What is programmer – man + woman?
• According to word vectors trained on news data, it’s homemaker

• Existing data has tons of correlations between occupation and gender

• word2vec doesn’t know what is a semantic relationship and what is 
a historical correlation
• “queen” is more related to “she” than “he” semantically

• “nurse” may co-occur more with “she” than “he” in available data but not a 
semantic relationship!

44



Word vectors quantify gender stereotypes

• X-axis: Real percentage 
difference in workforce 
between women & men

• Y-axis: Embedding bias 
= difference of distance 
from male-related 
words and female-
related words

• Strong correlation!

45



Conclusion

• Distributional hypothesis: Words that 
appear in similar contexts have similar 
meanings

• word2vec: Learn vectors by inventing a 
prediction problem (did this word-
context pair really occur in the text?)

• Vector arithmetic lets us complete 
relations

• Vectors capture both lexical semantics 
and historical biases

• Next time: Word vectors as a 
component of neural networks for 
processing text

46

… lemon, a tablespoon of apricot jam, a pinch…

Word w

Window of radius 2


	Default Section
	Slide 1: Finishing Computer Vision; Word Vectors & word2vec
	Slide 2: Review: Convolutions
	Slide 3: Review: Convolutional Neural Networks
	Slide 4: Review: The Basic “Building Blocks”
	Slide 5: Review: The Basic “Building Blocks”
	Slide 6: Review: The Basic “Building Blocks”
	Slide 7: CNN “Building Blocks”
	Slide 8: CNN “Building Blocks”
	Slide 9: CNN “Building Blocks”
	Slide 10: Building a CNN Model
	Slide 11: Outline
	Slide 12: Image Classification
	Slide 13: Progress on ImageNet
	Slide 14: Object Detection
	Slide 15: Semantic Segmentation
	Slide 16: Semantic Segmentation
	Slide 17: Image Generation
	Slide 18: Diffusion Models
	Slide 19: Diffusion Models
	Slide 20: Diffusion Models
	Slide 21: Diffusion Models
	Slide 22: Diffusion Model Generated Images
	Slide 23: Announcements
	Slide 24: Outline
	Slide 25: Word vectors
	Slide 26: Lexical Semantics
	Slide 27: The Distributional Hypothesis
	Slide 28: Outline
	Slide 29: Word vectors as a learning problem
	Slide 30: Creating a dataset
	Slide 31: Creating a dataset
	Slide 32: How to sample negatives?
	Slide 33: word2vec model
	Slide 34: Training word2vec
	Slide 35: Is this a convex problem?
	Slide 36: word2vec overview
	Slide 37: Outline
	Slide 38: Analogies in vector space
	Slide 39: Answering analogy queries
	Slide 40: Visualizing Analogies
	Slide 41: Visualizing Analogies
	Slide 42: Outline
	Slide 43: Machine learning is a tornado
	Slide 44: What word associations are out there?
	Slide 45: Word vectors quantify gender stereotypes
	Slide 46: Conclusion


