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Review: Convolutions

• Convolutional Layer
• Extract 1 feature for each window of input 

by applying kernel
• Output is computed as a dot product (linear 

operation)

• Local Receptive Field: Each output cell is 
computed based on a small window of 
the input image

• Weight Sharing: Same kernel used to 
process each window of the input image
• The kernel defines a classifier (e.g., is there 

a moose here?) that gets applied to every 
window of the image
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Review: Convolutional Neural Networks

• Input -> Conv+ReLU + Pool -> Fully connected layer -> Output
• Convolutions at beginning to understand

each small window of image
• Fully connected layer at end to make overall prediction
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Review: The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()
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Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute 
y = Wx + b

Params: W, b



Review: The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of 
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(), 
nn.functional.relu(), etc.
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Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute 
yi = σ(xi)

for each i



Review: The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.
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CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and 

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()
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Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
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with input

Params: Kernel



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()
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Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to 

extract features
• Then use MLP to make final 

prediction

• Basic steps are still all the 
same
• Backpropagation still works

• Gradient descent needed to 
update all parameters
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Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Image Classification
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• ImageNet dataset: 14 
million images, 1000 
labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

13Source: https://www.eff.org/files/AI-progress-metrics.html 

• 2012: AlexNet wins 
ImageNet 
challenge, marks 
start of deep 
learning era (and is 
a convolutional 
neural network)

• 2016: Machine 
learning surpasses 
human accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy: 
Propose 
candidate 
bounding boxes, 
then classify each 
box (possibly as 
nothing)

14



Semantic Segmentation

• Task: Predict a class label 
for each pixel
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Semantic Segmentation

• One strategy: Encoder-Decoder (“U-net”)
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an 
output of original size
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Image Generation

• Segmentation: 
“generates” a 2-D 
grid of 
predictions
• This is almost 

like generating 
an image

• Can we use
CNNs to
generate new 
images?
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Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss
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Add noise to picture, create training data

Train model to reverse the process



Diffusion Models
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Add noise to picture, create training data

Train model to reverse the process

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models
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Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

• Test-time: Start from pure noise, apply 
the neural network many times to 
create an image!

• How to input a caption? More on this 
later…
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Test time: Model converts noise to 
images over many iterations



Diffusion Model Generated Images
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Denoising Diffusion Probabilistic Models. Jonathan Ho, Ajay Jain, and Pieter Abbeel. NeurIPS 2020.



Announcements

• HW1 Regrades: Open until next Tuesday, February 27

• HW2 Due Thursday, February 29

• Midterm exam Thursday, March 7
• In-class, 80 minutes in SLH 100

• Allowed one double-sided 8.5x11 sheet of notes

• Practice Exams from past 2 semester will be released soon

• Section tomorrow: Sci-kit learn
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Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Word vectors
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• Goal: For each word w, learn vector 
vw that represents word’s meaning 
• Similar words should have similar

vectors
• Different components of the vector 

may represent different properties of a 
word

• Why?
• Neural networks take vectors as 

inputs. To feed them sentences, need 
to represent each word as a vector

• Independently interesting to 
understand relationships between 
words

Word w Vector vw

A [-0.4, 1.4, -1.2]

Aardvark [2.2, -1.8, 0.6]

Airport [0.7, 0.3, 3.1]

…

Elephant [2.1, -1.3, 0.3

…

Zoo [2.1, -1.4, 3.2]

Related to animals? Is a place



Lexical Semantics

• Word vectors should capture lexical semantics
• Lexical = word-level

• Semantics = meaning

• What do we want to represent?
• Synonymy (car/automobile) or antonymy (cold/hot)

• Hypernymy/Hyponymy (animal/dog)

• Similarity (cat/dog, coffee/cup, waiter/menu)

• Various features

• Sentiment (positive/negative)

• Formality

• All sorts of properties (Is a city? Is an action that a person can do?)
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vcat vdog vhot …



The Distributional Hypothesis

• You hear a new word, ongchoi
• Ongchoi is delicious sauteed with garlic. 

• Ongchoi is superb over rice.

• ...ongchoi leaves with salty sauces... 

• Compare with similar contexts:
• ...spinach sauteed with garlic over rice...

• ...chard stems and leaves are delicious... 

• ...collard greens and other salty leafy 
greens
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• Conclusion: ongchoi is probably a leafy green 
similar to spinach, chard, and collard greens

• Distributional Hypothesis: Words appearing in 
similar contexts have similar meanings!

• Firth 1957: “You Shall Know a Word by the 
Company It Keeps”



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Word vectors as a learning problem

• Want to learn vector vw for each 
word w

• What makes a vector good?

• Idea: vw should help you predict 
which words co-occur with w
• Captures distribution of context 

words for w

• Think of it as N binary classification 
problems, where N is size of 
vocabulary
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vongchoi

“sauteed”? Yes
“rice”? Yes
“kicked”? No
“car”? No



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
• We don’t really care about these 

supervised learning problems
• We just care that we learn good vectors

• Task i: Did word w co-occur with the i-
th word?
• Positive examples: Real co-occurrences 

within sliding window
• Negative examples: Random samples

30

… lemon, a tablespoon of apricot jam, a pinch…

Window of radius 2

Word w (“input”) Context w’ (“task”) y (label)

apricot tablespoon +1

apricot of +1

apricot jam +1

apricot a +1

Word w



Creating a dataset

• Given: Raw dataset of text 
(unsupervised)

• We will create N “fake” supervised 
learning problems!
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within sliding window
• Negative examples: Random samples
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How to sample negatives?

• Choose a fixed ratio of negative:positive
(e.g. 2)

• Baseline: Sample according to frequency of 
word p(w) in the data
• Not ideal because very common words (“the”) 

get sampled a lot

• Improvement: Sample according to α-
weighted frequency

• For α < 1, high-frequency words get down-
weighted

• Typically choose around α=.75
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word2vec model

• Parameters (all of dimension d):
• Word vector vw for each word (“features”—the actual word 

vectors)
• Context vector cw for each word (“classifier weights” for task 

corresponding to w as context)

• Goal: vw can be used by linear classifier to do any of 
the N “was this a context word” tasks

• Objective looks just like logistic regression:
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vcat vdog vhot …

ccat cdog chot …

word context
“features” 
for word

“weight” 
for context



Training word2vec

• Strategy: Gradient descent

• Gradient updates essentially same as logistic regression
• Gradient w.r.t. c holds v fixed, so it’s like v are fixed features

• Gradient w.r.t. v is symmetrical
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Examples where w’ = u
Same as logistic regression 

where vw is the input x

Examples where w = u
Same as logistic regression 

where cw’ is the input x



Is this a convex problem?

• Looks a lot like logistic regression…

• But it’s not convex!

• Why?
• In logistic regression, we only optimize w.r.t.

weights, features are constant
• Now we optimize both at the same time!

• Fact to remember: f(x) = x1 * x2 is not 
convex
• Consider points [-1, 1] and [1, -1]
• f(x) = -1 at both points
• But at the midpoint [0, 0], f(x) = 0

• Corollary: We need to randomly initialize
• Must break symmetry, as in neural networks
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Both are optimization 
variables

f([-1,1]) = -1

f([1,-1]) = -1

f([0,0]) = 0



word2vec overview

• Acquire large unsupervised text corpus

• Create positive examples for every word by using 
sliding window

• Create negative examples by randomly sampling 
context word from weighted word frequency

• Randomly initialize all v and c vectors

• Train on logistic regression-like loss with gradient 
descent

• Return v vectors
• c vectors not needed—just helpers
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vcat vdog vhot …

ccat cdog chot …



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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tree

vine

Analogies in vector space

• Apple is to tree as grape is to…

• In vector space, resembles a 
parallelogram
• Same relationship between apple and 

tree holds between grape and vine

• vvine ≈ vtree – vapple + vgrape
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apple

grape

Represents the 
“grows on” relation

Query
word



Answering analogy queries

• Compute v = vtree – vapple + vgrape

• Find word w in vocabulary whose vw

is most similar to v
• Common choice: Cosine similarity

(= cosine of angle between x and y)

• Typically need to exclude words very 
similar to the query word (e.g. “grapes”)
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tree

v

apple
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Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality

reduction later!

• Roughly same difference 
between male/female versions 
of the same word
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Visualizing Analogies

• Figure: Dimensionality reduction 
to 2D, then plot words with 
known relationship
• We’ll talk about dimensionality 

reduction later!

• Roughly same difference 
between base, comparative, 
and superlative forms of 
adjectives

41



Outline

• Computer vision tasks

• Word vectors
• What do we want?

• word2vec

• Solving analogies

• Bias in word vectors
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Machine learning is a tornado

• …it picks up everything 
in its path

• Data has all sorts of 
associations we may 
not want to model
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What word associations are out there?

• What is programmer – man + woman?
• According to word vectors trained on news data, it’s homemaker

• Existing data has tons of correlations between occupation and gender

• word2vec doesn’t know what is a semantic relationship and what is 
a historical correlation
• “queen” is more related to “she” than “he” semantically

• “nurse” may co-occur more with “she” than “he” in available data but not a 
semantic relationship!
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Word vectors quantify gender stereotypes

• X-axis: Real percentage 
difference in workforce 
between women & men

• Y-axis: Embedding bias 
= difference of distance 
from male-related 
words and female-
related words

• Strong correlation!
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Conclusion

• Distributional hypothesis: Words that 
appear in similar contexts have similar 
meanings

• word2vec: Learn vectors by inventing a 
prediction problem (did this word-
context pair really occur in the text?)

• Vector arithmetic lets us complete 
relations

• Vectors capture both lexical semantics 
and historical biases

• Next time: Word vectors as a 
component of neural networks for 
processing text
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… lemon, a tablespoon of apricot jam, a pinch…

Word w

Window of radius 2
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