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Review: Neural networks as feature learners
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Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

Learn to classify based on features 
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Model must learn that “is front clear” is a useful concept 



A hierarchy of features

• Turn left?
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Look at whole image



A hierarchy of features

• Turn left?

• Front is clear?
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Look at large area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?
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Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

• Is this a line?
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Look at tiny patch



Learning features hierarchically

• Today: Process images by 
learning features hierarchically

• Start with most basic features on 
smallest patches (e.g., a line)

• Based on those, identify more 
complex features (e.g., a moose)
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Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks
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A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!
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No moose
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A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!
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Moose!



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

• We just did a convolution!
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Moose in far left?
Moose in center left?
Moose in center right?
Moose in far right?

Learned
features
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No 
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?
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Convolutions

• Convolution is an operation that takes 
in two matrices:
• Kernel: K x K matrix (e.g., K=3)
• Input: W x H matrix

• Output: (W-K+1) x (H-K+1) matrix
• ij-th element of output is dot product of 

kernel & input[i:i+K,j:j+K]
• (I’m 0-indexing in these slides)

• Convolutional Layer: Kernel is our 
weight/parameter, use convolution to 
extract features

• Note: Convolution is a linear
operation!
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Motivation #1: Local Receptive Fields

• Motivation #1: Each 
neuron should only 
look at a small 
patch of input

• Why? Local 
textures/shapes are 
useful

• First understand 
local patterns, build 
up to global 
understanding
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Look at tiny patch



Motivation #2: Weight Sharing

• Motivation #2: In each local 
receptive field, the same types of 
features are useful
• Basic: Detecting edges

• More advanced: Detecting moose

• So, share the same kernel (i.e.
weights) for all image patches

• Convolutions encode translation 
equivariance
• If your image gets shifted, convolution 

outputs just get shifted too
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Convolutional vs. Fully Connected Layers

• Let’s count parameters needed
• Convolutional layer with K=3

• Kernel = 3 x 3 = 9 parameters

• Add a bias term = 10 parameters

• Fully connected layer with 30-dim input, 12-dim 
output needs 
• W: 30 * 12 = 360 parameters

• b: 12 parameters

• Total: 372 parameters

• Fewer parameters = need less data to learn 
useful features

• FC would have to learn to detect the same 
feature (e.g., an edge) over and over again at 
different locations
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Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for 

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

• Where Cin is number of input channels

29



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for 

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

• Where Cin is number of input channels

30



Multiple Input Channels

• Input may have multiple input 
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Multiple Output Channels

• What if you want more than one 
kernel?
• Can have multiple kernels, each to 

detect a different thing

• One for vertical lines, one for 
horizontal lines, etc.

• So the total size of kernel tensor is
Cout x Cin x K x K
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Stride and Padding

• Stride: As you slide across image, 
how big of a step do you take?
• Default: stride=1 pixel

• Can choose larger stride to reduce 
dimensionality

• Padding: Can pad the edges of 
images with 0’s
• For K=3 and no padding, width/height 

shrink by 2 each time

• Adding width-1 padding on each side 
prevents this

• For K=5, pad by 2, etc.

• Default: No padding
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Announcements

• HW1 grades out
• Please review the solutions posted on blackboard

• HW2 due next Thursday, February 29

• Section tomorrow: Scikit-learn tutorial
• Useful for final project, has implementations for many machine learning 

methods
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Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks

35



Convolutional Neural Networks (CNNs)

• How to incorporate convolutions into a full model?

• Basic idea: Use convolutions at beginning, then fully connected 
layer at end
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Convolutional Layers

• First step: Convolutional Layer + ReLU

• Analogous to Linear layer + ReLU
• Convolutional layer is just a special type of 

linear layer with local receptive fields & 
weight sharing!

• So we again want to apply a non-linearity 
after the linear operation

• ReLU is standard for CNNs
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Pooling

• Goal: Make receptive field bigger as 
we process the image
• Early: Look for edges (small patch)

• Later: Look for moose (larger patch)

• How do we do this? Pooling!

• Effectively we reduce resolution of 
input by a factor of P (often P=2)
• Average pool: Average in each 2x2 patch

• Max pool: Max in each 2x2 patch
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More Conv + ReLU + Pool

• Can stack multiple 
Conv + ReLU + pool 
blocks

• Similar to increasing 
number of hidden 
layers in MLP

• Deeper layers 
convolutional layers 
have larger effective 
receptive field 
• Can learn higher-level 

concepts

39



Fully connected layers

• At the very end, we want fully global processing

• Fully connected layers are good at this!

• First flatten from [channels x width x height] to a flat vector

• Then do a MLP (e.g., 2-layer neural network) on top
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Keeping the dimensions straight

• Suppose convolution kernels are 3x3, 10 output channels, pooling is 2x2, no padding, stride=1
• Each convolution operation loses 3-1=2 in width and height

• In code, also a “batch” dimension because we process all examples in batch together
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3 x 50 x 70 10 x 48 x 68 10 x 24 x 34 10 x 22 x 32 10 x 11 x 16 1760



How does backprop learn features?

• Every convolution & fully connected layer has (many) parameters
• Convolutional: Kernel with #outChannels x (#inChannels x K x K + 1) params
• Fully connected: #outDimensions x (#inDimensions + 1) params

• These all have to get learned by backprop + gradient descent on the loss

42



How does backprop learn features?

• Training example (x(1), y(1)): ∂(Loss)/∂(h)> 0
• Means that making h smaller leads to lower loss

• Training example (x(2), y(2)): ∂(Loss)/∂(h) < 0
• Means that making h larger leads to lower loss
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• h is output of “classifier”
• Gradient tunes classifier 

parameters to make output 
larger on some examples, 
smaller on others

Hidden unit h



How does backprop learn features?

• Backpropagation: Does making c bigger change h in good or bad way?

• Sum up these considerations over all hidden units that depend on c

• Train convolutional kernel parameters so that value of c leads to [values of h’s that lead to 
good outputs]

• And so on for earlier layers…

44

Hidden unit h
Output of 

convolution c



What features do CNNs learn?

• Kernels of AlexNet first layer
• Each one is 3 (for RGB) x 11 x 11

• What is learned?
• Edge detectors in different 

directions and widths

• Patches of various colors
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What features do CNNs learn?

Each Row: Images that activate a different neuron in 5th POOL layer of AlexNet

46

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks

47



Image Classification

48

• ImageNet dataset: 14 
million images, 1000 
labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

49Source: https://www.eff.org/files/AI-progress-metrics.html 

• 2012: AlexNet wins 
ImageNet 
challenge, marks 
start of deep 
learning era (and is 
a convolutional 
neural network)

• 2016: Machine 
learning surpasses 
human accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy: 
Propose 
candidate 
bounding boxes, 
then classify each 
box (possibly as 
nothing)
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Semantic Segmentation

• Task: Predict a class label 
for each pixel
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Semantic Segmentation

• One strategy: Encoder-Decoder (“U-net”)
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an 
output of original size
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Image Generation

• Segmentation: 
“generates” a 2-D 
grid of 
predictions
• This is almost 

like generating 
an image

• Can we use
CNNs to
generate new 
images?
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Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

54

Add noise to picture, create training data

Train model to reverse the process



Diffusion Models
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Add noise to picture, create training data

Train model to reverse the process

• Training: Add noise to good images, 
train neural network to undo the noise
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• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models
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Add noise to picture, create training data

Train model to reverse the process

Noisy
Image

Less Noisy
Image

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

• Test-time: Start from pure noise, apply 
the neural network many times to 
create an image!

• How to input a caption? More on this 
later…

57

Test time: Model converts noise to 
images over many iterations



Diffusion Model Generated Images

58
Denoising Diffusion Probabilistic Models. Jonathan Ho, Ajay Jain, and Pieter Abbeel. NeurIPS 2020.



Conclusion

• Convolution: Restricted linear operation 
parameterized by a small kernel

• Convolutional layers extract useful 
features for images
• Motivation #1: Local Receptive Fields

• Motivation #2: Weight Sharing

• Standard CNN architecture
• Start: Convolutional layer + ReLU + Max 

Pooling

• End: Fully connected layer
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