
Deep Learning for Images: 
Convolutional Neural 
Networks

Robin Jia
USC CSCI 467, Spring 2024

February 20, 2024



Review: Neural networks as feature learners

2

Input x

Classifier 2: 
Is left clear?

0

1

0

Classifier 4: 
Where to go?

Output y
Turn left 

Learn to classify based on features 
(same as linear model)

Learn a classifier whose output is a good feature
We don’t tell the model what classifier to learn

Model must learn that “is front clear” is a useful concept 



A hierarchy of features

• Turn left?

3

Look at whole image



A hierarchy of features

• Turn left?

• Front is clear?

4

Look at large area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

5

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

6

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

7

Look at smaller area



A hierarchy of features

• Turn left?

• Front is clear?

• Is object a moose?

• Is this a head?

• Is this an antler?

• Is this a line?

8

Look at tiny patch



Learning features hierarchically

• Today: Process images by 
learning features hierarchically

• Start with most basic features on 
smallest patches (e.g., a line)

• Based on those, identify more 
complex features (e.g., a moose)

9



Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks

10



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

11

No moose



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

12

No moose



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

13

Moose!



A moose detector

• Suppose you have a 
classifier that can tell if 
a region has a moose

• How to use it to create a 
useful feature vector?

• Slide it over each region 
and check if there’s a 
moose there!

• We just did a convolution!

14

0
0
1
0
…

Moose in far left?
Moose in center left?
Moose in center right?
Moose in far right?

Learned
features

Moose!No 
moose

No 
moose

No 
moose



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

15

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

16

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

17

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Input image
5x6 matrix

Convolve

3 -1

Output
3x4 matrix

Dot product
kernel & 

each image 
patch



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

18

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

19

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

20

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

21

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

22

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

23

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0 0

Dot product
kernel & 

each image 
patchInput image

5x6 matrix

Output
3x4 matrix



An edge detector

Let’s start a little less ambitiously…can we detect a vertical line?

24

-1 2 -1

-1 2 -1

-1 2 -1

(Convolutional) 
Kernel

3x3 matrix

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

Convolve

3 -1 0 0

5 -2 0 0

3 -1 0 0Dot product
kernel & 

each image 
patch

Each extracted feature looks for 
the same thing in different location

Input image
5x6 matrix

Output
3x4 matrix

“is there 
vertical edge 
in top left?”

“is there 
vertical edge in 
bottom right?”



Convolutions

• Convolution is an operation that takes 
in two matrices:
• Kernel: K x K matrix (e.g., K=3)
• Input: W x H matrix

• Output: (W-K+1) x (H-K+1) matrix
• ij-th element of output is dot product of 

kernel & input[i:i+K,j:j+K]
• (I’m 0-indexing in these slides)

• Convolutional Layer: Kernel is our 
weight/parameter, use convolution to 
extract features

• Note: Convolution is a linear
operation!

25

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input
(5 x 6)

Output
(5-3+1 x 6-3+1)

=(3 x 4)

(1, 2)-th 
element

input[1:4,2:5]



Motivation #1: Local Receptive Fields

• Motivation #1: Each 
neuron should only 
look at a small 
patch of input

• Why? Local 
textures/shapes are 
useful

• First understand 
local patterns, build 
up to global 
understanding

26

Look at tiny patch



Motivation #2: Weight Sharing

• Motivation #2: In each local 
receptive field, the same types of 
features are useful
• Basic: Detecting edges

• More advanced: Detecting moose

• So, share the same kernel (i.e.
weights) for all image patches

• Convolutions encode translation 
equivariance
• If your image gets shifted, convolution 

outputs just get shifted too

27

Moose!No mooseNo moose No moose



Convolutional vs. Fully Connected Layers

• Let’s count parameters needed
• Convolutional layer with K=3

• Kernel = 3 x 3 = 9 parameters

• Add a bias term = 10 parameters

• Fully connected layer with 30-dim input, 12-dim 
output needs 
• W: 30 * 12 = 360 parameters

• b: 12 parameters

• Total: 372 parameters

• Fewer parameters = need less data to learn 
useful features

• FC would have to learn to detect the same 
feature (e.g., an edge) over and over again at 
different locations

28

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(size 9)

Input
(size 30)

Output
(size 12)



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for 

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

• Where Cin is number of input channels

29



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for 

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

• Where Cin is number of input channels

30



Multiple Input Channels

• Input may have multiple input 
channels
• Color image has 3 “channels” for 

red/green/blue

• Input is actually 3 x W x H

• Solution: Kernel must be of size 
Cin x K x K

• Where Cin is number of input channels

31



Multiple Output Channels

• What if you want more than one 
kernel?
• Can have multiple kernels, each to 

detect a different thing

• One for vertical lines, one for 
horizontal lines, etc.

• So the total size of kernel tensor is
Cout x Cin x K x K

32

-1 2 -1

-1 2 -1

-1 2 -1

Kernel[0,0,:,:]

-1 -1 -1

2 2 2

-1 -1 -1

Kernel[1,0,:,:]



Stride and Padding

• Stride: As you slide across image, 
how big of a step do you take?
• Default: stride=1 pixel

• Can choose larger stride to reduce 
dimensionality

• Padding: Can pad the edges of 
images with 0’s
• For K=3 and no padding, width/height 

shrink by 2 each time

• Adding width-1 padding on each side 
prevents this

• For K=5, pad by 2, etc.

• Default: No padding

33

Moose!No mooseNo moose

Stride

Padding

No moose



Announcements

• HW1 grades out
• Please review the solutions posted on blackboard

• HW2 due next Thursday, February 29

• Section tomorrow: Scikit-learn tutorial
• Useful for final project, has implementations for many machine learning 

methods

34



Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks

35



Convolutional Neural Networks (CNNs)

• How to incorporate convolutions into a full model?

• Basic idea: Use convolutions at beginning, then fully connected 
layer at end

36



Convolutional Layers

• First step: Convolutional Layer + ReLU

• Analogous to Linear layer + ReLU
• Convolutional layer is just a special type of 

linear layer with local receptive fields & 
weight sharing!

• So we again want to apply a non-linearity 
after the linear operation

• ReLU is standard for CNNs

37



Pooling

• Goal: Make receptive field bigger as 
we process the image
• Early: Look for edges (small patch)

• Later: Look for moose (larger patch)

• How do we do this? Pooling!

• Effectively we reduce resolution of 
input by a factor of P (often P=2)
• Average pool: Average in each 2x2 patch

• Max pool: Max in each 2x2 patch

38



More Conv + ReLU + Pool

• Can stack multiple 
Conv + ReLU + pool 
blocks

• Similar to increasing 
number of hidden 
layers in MLP

• Deeper layers 
convolutional layers 
have larger effective 
receptive field 
• Can learn higher-level 

concepts

39



Fully connected layers

• At the very end, we want fully global processing

• Fully connected layers are good at this!

• First flatten from [channels x width x height] to a flat vector

• Then do a MLP (e.g., 2-layer neural network) on top

40



Keeping the dimensions straight

• Suppose convolution kernels are 3x3, 10 output channels, pooling is 2x2, no padding, stride=1
• Each convolution operation loses 3-1=2 in width and height

• In code, also a “batch” dimension because we process all examples in batch together

41

3 x 50 x 70 10 x 48 x 68 10 x 24 x 34 10 x 22 x 32 10 x 11 x 16 1760



How does backprop learn features?

• Every convolution & fully connected layer has (many) parameters
• Convolutional: Kernel with #outChannels x (#inChannels x K x K + 1) params
• Fully connected: #outDimensions x (#inDimensions + 1) params

• These all have to get learned by backprop + gradient descent on the loss

42



How does backprop learn features?

• Training example (x(1), y(1)): ∂(Loss)/∂(h)> 0
• Means that making h smaller leads to lower loss

• Training example (x(2), y(2)): ∂(Loss)/∂(h) < 0
• Means that making h larger leads to lower loss

43

• h is output of “classifier”
• Gradient tunes classifier 

parameters to make output 
larger on some examples, 
smaller on others

Hidden unit h



How does backprop learn features?

• Backpropagation: Does making c bigger change h in good or bad way?

• Sum up these considerations over all hidden units that depend on c

• Train convolutional kernel parameters so that value of c leads to [values of h’s that lead to 
good outputs]

• And so on for earlier layers…

44

Hidden unit h
Output of 

convolution c



What features do CNNs learn?

• Kernels of AlexNet first layer
• Each one is 3 (for RGB) x 11 x 11

• What is learned?
• Edge detectors in different 

directions and widths

• Patches of various colors

45



What features do CNNs learn?

Each Row: Images that activate a different neuron in 5th POOL layer of AlexNet

46

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



Outline

• Extracting features with convolutions

• Convolutional neural networks

• Computer vision tasks

47



Image Classification

48

• ImageNet dataset: 14 
million images, 1000 
labels

• CNNs do very well at 
these tasks!



Progress on ImageNet

49Source: https://www.eff.org/files/AI-progress-metrics.html 

• 2012: AlexNet wins 
ImageNet 
challenge, marks 
start of deep 
learning era (and is 
a convolutional 
neural network)

• 2016: Machine 
learning surpasses 
human accuracy

https://www.eff.org/files/AI-progress-metrics.html


Object Detection

• Task: Identify 
objects, provide 
bounding boxes, 
and label them

• One strategy: 
Propose 
candidate 
bounding boxes, 
then classify each 
box (possibly as 
nothing)

50



Semantic Segmentation

• Task: Predict a class label 
for each pixel

51



Semantic Segmentation

• One strategy: Encoder-Decoder (“U-net”)
• First do conv + ReLU + pooling as before

• Then do upsampling + conv + ReLU to generate an 
output of original size

52



Image Generation

• Segmentation: 
“generates” a 2-D 
grid of 
predictions
• This is almost 

like generating 
an image

• Can we use
CNNs to
generate new 
images?

53



Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

54

Add noise to picture, create training data

Train model to reverse the process



Diffusion Models

55

Add noise to picture, create training data

Train model to reverse the process

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models

56

Add noise to picture, create training data

Train model to reverse the process

Noisy
Image

Less Noisy
Image

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss



Diffusion Models

• Training: Add noise to good images, 
train neural network to undo the noise
• Input: Noisy image

• Output: Less noisy image

• Architecture: Can also use U-Net

• Objective: Per-pixel regression loss

• Test-time: Start from pure noise, apply 
the neural network many times to 
create an image!

• How to input a caption? More on this 
later…

57

Test time: Model converts noise to 
images over many iterations



Diffusion Model Generated Images

58
Denoising Diffusion Probabilistic Models. Jonathan Ho, Ajay Jain, and Pieter Abbeel. NeurIPS 2020.



Conclusion

• Convolution: Restricted linear operation 
parameterized by a small kernel

• Convolutional layers extract useful 
features for images
• Motivation #1: Local Receptive Fields

• Motivation #2: Weight Sharing

• Standard CNN architecture
• Start: Convolutional layer + ReLU + Max 

Pooling

• End: Fully connected layer

59

-1 2 -1

-1 2 -1

-1 2 -1

0 0 0 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

0 1 0 0 0 0

0 0 0 0 0 0

3 -1 0 0

5 -2 0 0

3 -1 0 0

Kernel
(K=3)

Input

Output


	Default Section
	Slide 1: Deep Learning for Images: Convolutional Neural Networks
	Slide 2: Review: Neural networks as feature learners
	Slide 3: A hierarchy of features
	Slide 4: A hierarchy of features
	Slide 5: A hierarchy of features
	Slide 6: A hierarchy of features
	Slide 7: A hierarchy of features
	Slide 8: A hierarchy of features
	Slide 9: Learning features hierarchically
	Slide 10: Outline
	Slide 11: A moose detector
	Slide 12: A moose detector
	Slide 13: A moose detector
	Slide 14: A moose detector
	Slide 15: An edge detector
	Slide 16: An edge detector
	Slide 17: An edge detector
	Slide 18: An edge detector
	Slide 19: An edge detector
	Slide 20: An edge detector
	Slide 21: An edge detector
	Slide 22: An edge detector
	Slide 23: An edge detector
	Slide 24: An edge detector
	Slide 25: Convolutions
	Slide 26: Motivation #1: Local Receptive Fields
	Slide 27: Motivation #2: Weight Sharing
	Slide 28: Convolutional vs. Fully Connected Layers
	Slide 29: Multiple Input Channels
	Slide 30: Multiple Input Channels
	Slide 31: Multiple Input Channels
	Slide 32: Multiple Output Channels
	Slide 33: Stride and Padding
	Slide 34: Announcements
	Slide 35: Outline
	Slide 36: Convolutional Neural Networks (CNNs)
	Slide 37: Convolutional Layers
	Slide 38: Pooling
	Slide 39: More Conv + ReLU + Pool
	Slide 40: Fully connected layers
	Slide 41: Keeping the dimensions straight
	Slide 42: How does backprop learn features?
	Slide 43: How does backprop learn features?
	Slide 44: How does backprop learn features?
	Slide 45: What features do CNNs learn?
	Slide 46: What features do CNNs learn?
	Slide 47: Outline
	Slide 48: Image Classification
	Slide 49: Progress on ImageNet
	Slide 50: Object Detection
	Slide 51: Semantic Segmentation
	Slide 52: Semantic Segmentation
	Slide 53: Image Generation
	Slide 54: Diffusion Models
	Slide 55: Diffusion Models
	Slide 56: Diffusion Models
	Slide 57: Diffusion Models
	Slide 58: Diffusion Model Generated Images
	Slide 59: Conclusion


