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Linear
regression

Review: Neural Networks (2-layer MLP)

• Hidden layer = A bunch of 
logistic regression classifiers
• Parameters: wj and bj for each 

classifier, for each j=1, …, h
• Equivalently: matrix W (h x d) and 

vector b (length h)
• h = number of neurons in hidden 

layer (“hidden nodes”)
• Produces “activations”= learned 

feature vector

• Final layer = linear model
• For regression: linear model with 

weight vector v and bias c

• Parameters of model are
θ = (W, b, v, c)
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Input x
(vector of 
length d) Hidden layer 

“activations” z
(vector of length h)

Output
y

Element-wise sigmoid

Overall output :

Hidden layer Final layer



Review: Training Neural Networks

Linear Regression

• Model’s output is 

• (Unregularized) loss function is

Regression w/ Neural Networks

• Model’s output is

• Use same loss function, in terms of g!
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Training objective for both types of models:
Also applies for 
logistic regression,
softmax regression, etc.



Review: Neural Building Blocks

• Can build many different neural 
architectures from same set of 
building blocks

• To train any model, first build the 
computation graph that 
computes the loss

• With backpropagation, gradient 
of loss w.r.t. parameters can be 
computed automatically!

• Update all parameters with 
gradient descent update rule 
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Linear Layer 2
din=dhidden, dout=1
Params: w2, b2

Output: loss

MSELoss Layer
z = (ypred – ytrue)2

Input x

Input y

Sigmoid Layer

Linear Layer 1
din=d, dout=dhidden

Params: w1, b1N
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Neural Network Hyperparameters (so far)

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?

• How many layers?

• Which activation function (sigmoid, tanh, ReLU)?

• Optimization [coming today]

• Regularization [coming today]
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How to choose? Big grid search or random search, 
optimize for development set



Today’s Plan

• Optimization (i.e., Training)
• Stochastic gradient descent

• Random initialization

• Learning rate schedules

• Momentum & Adam

• Regularization
• Early stopping

• Dropout
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Stochastic gradient descent

Gradient Descent

• Disadvantage: 1 update is O(n) time
• What if dataset is very large?

• Idea: Approximate with sample mean

Stochastic Gradient Descent

1. Sample a batch B of examples 
from the training dataset

2. Do the update
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General loss function: 
Model’s output, depends on 
parameters θ

Average of per-example gradients

Sample mean within batch



Stochastic gradient descent

In practice, partition training set into batches:
 

for t = 1, …, T:

 Randomly partition training examples into batches B1, …, Bk
 for i = 1, …, k:

  

How many batches? Desired “batch size” (# examples/batch) is another 
hyperparameter to tune

• Larger batch size = more accurate gradient, but slower
• Smaller batch size = faster, but may wander in suboptimal directions

• SGD is most useful when training data is large, computing full gradient is expensive
• Can be used with any model
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Update based on sample mean 
within current batch

Each t (i.e., each pass over the dataset) is called one “epoch”



Stochastic gradient descent

• SGD: Each parameter 
update is only 
“approximately” going 
towards the minimum

• But given enough time, 
you’ll end up in (almost) 
the same place
• Plus each step is much 

faster!
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Training Objective Comparison

Linear Regression

• Model’s output is 

• (Unregularized) loss function is

Regression w/ Neural Networks

• Model’s output is

• Use same loss function, in terms of g!
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Convex loss function
when g(x) is linear

Non-convex loss function
when g(x) is neural network



Non-convexity During Training

• Linear models were convex
• All local optima are global optima

• All reasonable optimization methods will 
find a global optimum

• Neural Networks are non-convex
• Very hard to find global optimum

• Different optimization techniques will 
converge to different local optima, some 
of which are much better than others

• Choice of optimization method really 
matters!
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Local minimum
Gradient descent can get 

stuck here!



Initialization

• For convex problems (e.g. logistic 
regression), initialization doesn’t 
matter much for final result
• We just initialize parameters to all 0’s

• For neural networks, initialization 
matters a lot!
• Optimization problem is non-convex

• Where you start determines what 
parameters you learn
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Local minimum
If you initialize here,
you get stuck here!



The problem with all-0’s initialization

• What if we initialize with all 
0’s?

• Problem: Symmetry
• All hidden units start out the 

same, so gradients will be the 
same for each

• Thus, all hidden units will stay 
the same!

• We must initialize in a way 
that breaks the symmetry
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Input x

Hidden layer 
“activations” z

Output y

.5

.5

.5

If every wj starts as 0 vector,
gradient update to each wj will be the same

Linear
regression



How to initialize neural networks?

• Solution: Initialize every parameter 
to be a small random number

• How small? Depends on 
“fan-in” din (# input features) and 
“fan-out” dout (# output features) 
• Suppose input xj’s have variance γ2 

and wij’s have variance σ2

• For each row wi of W:

(Sum of din things, each with var. σ2 γ2 )
• This gets bigger as din gets bigger
• So: choose σ2 proportional to 1/din
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Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute 
y = Wx + b

Params: W, b

dout

din

W

w1

wdout



How to initialize neural networks

• As usual, you have many options…

• He initialization: 

• Xavier initialization:

• Pytorch default:

• Usually you don’t tune these as 
hyperparameters, just use defaults
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Also divides by dout

(But usually din and dout are similar size)

Uniform avoids large outliers
Note: Variance is proportional to 1/din

dout

din

W

w1

wdout
(mean 0, variance 2/din)



Importance of Learning Rate

• For convex problems (e.g. logistic 
regression), learning rate doesn’t 
change final result very much
• All reasonable values converge to the 

same final answer

• For neural networks, learning rate 
matters a lot!
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Local minimum
Get stuck here if learning rate 

is too small



Importance of Learning Rate

• Too small: Can’t take big enough 
steps, don’t converge fast enough, 
can get stuck in “flat” regions

• Too large: Steps are too large, too 
erratic and doesn’t converge

• Need to carefully tune learning 
rate
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Importance of Learning Rate
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Learning Rate Schedules

• Early on: We’re far from the 
optimum, want to take large 
steps

• Later on: We’re close to the 
optimum, take small steps so 
we don’t “overshoot”

• Solution: Start with large 
learning rate, make it smaller 
over time (“decay”)
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Challenges for SGD

Problem #1: Ill-Conditioned loss

• Surface is very curved/steep in some 
directions, but shallow in others

• High learning rate: Zig-zag along steep 
direction

• Low learning rate: Move slowly along 
shallow direction

Problem #2: Saddle Points

• Saddle Point = Area that is locally flat, 
but neither minimum nor maximum

• SGD can get stuck here because 
gradient is close to 0 -> take small steps
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Idea #1: Momentum
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Parameters w are “position”, they move
in the direction of momentum

Can handle ill-
conditioned problems!
Velocities cancel out 
in vertical direction, 

but build up in 
horizontal direction

SGD
w = w - lr * grad

SGD + Momentum

Momentum builds in direction of gradient

v = beta1 * v + (1-beta1) * grad

w = w - lr * v

“velocity” or
“momentum”

Keep momentum,
with some “friction” beta1

Apply a “force”
in direction of gradient 



SGD
w = w - lr * grad

RMSProp: Normalize gradient for each parameter 

s = beta2 * s + (1-beta2) * grad**2

w = w - lr * grad / (sqrt(s) + eps)

Idea #2: Per-Parameter Learning Rates
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For each parameter, divide gradient by the size of its gradient on average
Result: parameters with large average gradient (steeper directions) 
get smaller effective learning rate

Tracks how big grad usually 
is for each parameter

Weighted average of 
elementwise squares

Elementwise square
Measures size of grad for each parameter

Elementwise sqrt Avoid divide by 0



Momentum: Build momentum in direction of gradient
v = beta1 * v + (1 – beta1) * grad  # Add momentum

w = w – lr * v                    # Move in direction of momeutm

RMSProp: Adapt learning rate for each parameter separately
s = beta2 * s + (1-beta2) * grad**2   # Per-parameter scale

w = w – lr * grad / (sqrt(s) + eps)   # Divide by scale

Adam: Combine Momentum and RMSProp, commonly used!
v = beta1 * v + (1 – beta1) * grad    # Momentum

s = beta2 * s + (1-beta2) * grad**2   # RMSProp

w = w – lr * v / (sqrt(s) + eps)      # Mix both update rules

Adam = Momentum + Per-Parameter LR
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Comparison of SGD Variants

• SGD: Converges slowly

• Momentum: Moves much 
faster, although can 
overshoot

• Adagrad, RMSProp: 
Converge quickly here
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Comparison of SGD Variants

• One problem for non-
convex optimization: 
Saddle points
• Function is locally flat but is 

neither local minimum nor 
local maximum

• Need to “escape” these to 
find a minimum

• SGD gets stuck, other 
methods can escape
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Neural Network Hyperparameters

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?
• How many layers?
• Which activation function (sigmoid, tanh, ReLU)?

• Optimization
• Learning rate (initial & decay)
• Batch size
• Optimizer (momentum? Adam?)

• Regularization [Next!]
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Announcements

• HW2 released, due Thursday, March 6

• Midterm exam Thursday, March 13
• In-class, 80 minutes 

• We have both DMC 100 (this room) and SOS B4 (section room) reserved
• Last Name A-K: Go to DMC 100

• Last Name L-Z: Go to SOS B4

• Allowed one double-sided 8.5x11 sheet of notes

• Contact me ASAP about OSAS accommodations

• Section Friday: Pytorch
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Today’s Plan

• Optimization (i.e., Training)
• Stochastic gradient descent

• Random initialization

• Learning rate schedules

• Momentum & Adam

• Regularization
• Early stopping

• Dropout
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Regularization & Neural Networks

• Recall: Neural networks are universal 
approximators

• This means they are prone to 
overfitting!
• Low bias, high variance

• How to avoid overfitting too badly?
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Weight decay (AKA L2 Regularization)

• L2 regularization is a valid strategy!
• Add an L2 penalty for every parameter in the model

• Often called “weight decay” when used with neural networks
• Because every gradient step, you add the update
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Weights literally “decay” by factor of (1 – ηλ)



Early stopping

• Prevent overfitting by stopping training 
before you overfit too much
• Every so often during training, save 

“checkpoint” of model parameters and 
evaluate development loss

• Remember which checkpoint had best 
development loss

• If development loss keeps going up, stop 
training

• Can be used for any model, but especially 
common for neural networks
• For linear models, also common to train all the 

way to convergence
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Why Does Early Stopping Apply Regularization?

• Set of “Models that can be 
learned after T steps” is smaller 
than all possible models
• Parameters start as small random 

numbers

• Early stopping prevents parameters 
from changing too much from this 
initialization

• Thus, model family is restricted!
• Similar to L2 regularization
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All possible functions

All possible models for given architecture

All possible 
random initializations

All possible 
models after 4 

SGD steps



Dropout

• During Training: Randomly “drop 
out” some neurons by setting 
their value to 0
• Drop each out with probability p

• To compensate, scale the other 
neurons up by 1/p

• During testing, don’t do dropout
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Dropout prevents “Co-adapted” features

• Without dropout, two neurons could 
compute features that are only 
useful in tandem
• E.g., A and B individually are bad 

predictors, but A+B is useful predictor

• A and B are “co-adapted”

• Dropout disincentivizes this—each 
neuron individually should be useful
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https://www.youtube.com/watch?v=05MpycrocRI 

Geoffrey Hinton
(Turing Award winner,
One of the “Godfathers” of 
deep learning)

https://www.youtube.com/watch?v=05MpycrocRI


Dropout as an Ensemble
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https://www.youtube.com/watch?v=05MpycrocRI 

• “Ensemble” = average of multiple models’ predictions
• Usually better than using a single model
• Dropout ensembles over all 2^h different ways to 

dropout the h hidden neurons

During training, each neuron is on 1/2 the 
time and its value is 2x, so on average its 
output is the same as during testing

https://www.youtube.com/watch?v=05MpycrocRI


Dropout as a Generalization of Naïve Bayes

• What about dropout at the input layer?
• If we dropout all but one feature xj, we are 

just estimating P(y|xj), which is closely 
related to P(xj|y):

• At test time, we use all features: same as 
multiplying all P(xj|y)’s

• This is Naïve Bayes!

• Thus, Dropout at the input layer 
generalizes Naïve Bayes
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https://www.youtube.com/watch?v=05MpycrocRI 

https://www.youtube.com/watch?v=05MpycrocRI


Neural Network Hyperparameters

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?
• How many layers?
• Which activation function (sigmoid, tanh, ReLU)?

• Optimization
• Learning rate (initial & decay)
• Batch size
• Optimizer (momentum? Adam?)

• Regularization
• Weight decay
• Early stopping
• Dropout

37



Conclusion

• Optimization: Neural networks are non-convex, so choice of 
optimization strategy really matters!

• Regularization: Neural networks are very good at overfitting, need 
to counterbalance this

• Lots of hyperparameters!
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