
Neural Networks III:
Optimization, Regularization

Robin Jia
USC CSCI 467, Spring 2025

February 20, 2025

Linear
regression

Review: Neural Networks (2-layer MLP)

• Hidden layer = A bunch of
logistic regression classifiers
• Parameters: wj and bj for each

classifier, for each j=1, …, h
• Equivalently: matrix W (h x d) and

vector b (length h)
• h = number of neurons in hidden

layer (“hidden nodes”)
• Produces “activations”= learned

feature vector

• Final layer = linear model
• For regression: linear model with

weight vector v and bias c

• Parameters of model are
θ = (W, b, v, c)

2

Input x
(vector of
length d) Hidden layer

“activations” z
(vector of length h)

Output
y

Element-wise sigmoid

Overall output :

Hidden layer Final layer

Review: Training Neural Networks

Linear Regression

• Model’s output is

• (Unregularized) loss function is

Regression w/ Neural Networks

• Model’s output is

• Use same loss function, in terms of g!

3

Training objective for both types of models:
Also applies for
logistic regression,
softmax regression, etc.

Review: Neural Building Blocks

• Can build many different neural
architectures from same set of
building blocks

• To train any model, first build the
computation graph that
computes the loss

• With backpropagation, gradient
of loss w.r.t. parameters can be
computed automatically!

• Update all parameters with
gradient descent update rule

4

Linear Layer 2
din=dhidden, dout=1
Params: w2, b2

Output: loss

MSELoss Layer
z = (ypred – ytrue)2

Input x

Input y

Sigmoid Layer

Linear Layer 1
din=d, dout=dhidden

Params: w1, b1N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Neural Network Hyperparameters (so far)

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?

• How many layers?

• Which activation function (sigmoid, tanh, ReLU)?

• Optimization [coming today]

• Regularization [coming today]

5

How to choose? Big grid search or random search,
optimize for development set

Today’s Plan

• Optimization (i.e., Training)
• Stochastic gradient descent

• Random initialization

• Learning rate schedules

• Momentum & Adam

• Regularization
• Early stopping

• Dropout

6

Stochastic gradient descent

Gradient Descent

• Disadvantage: 1 update is O(n) time
• What if dataset is very large?

• Idea: Approximate with sample mean

Stochastic Gradient Descent

1. Sample a batch B of examples
from the training dataset

2. Do the update

7

General loss function:
Model’s output, depends on
parameters θ

Average of per-example gradients

Sample mean within batch

Stochastic gradient descent

In practice, partition training set into batches:

for t = 1, …, T:

 Randomly partition training examples into batches B1, …, Bk
 for i = 1, …, k:

How many batches? Desired “batch size” (# examples/batch) is another
hyperparameter to tune

• Larger batch size = more accurate gradient, but slower
• Smaller batch size = faster, but may wander in suboptimal directions

• SGD is most useful when training data is large, computing full gradient is expensive
• Can be used with any model

8

Update based on sample mean
within current batch

Each t (i.e., each pass over the dataset) is called one “epoch”

Stochastic gradient descent

• SGD: Each parameter
update is only
“approximately” going
towards the minimum

• But given enough time,
you’ll end up in (almost)
the same place
• Plus each step is much

faster!

9

Training Objective Comparison

Linear Regression

• Model’s output is

• (Unregularized) loss function is

Regression w/ Neural Networks

• Model’s output is

• Use same loss function, in terms of g!

10

Convex loss function
when g(x) is linear

Non-convex loss function
when g(x) is neural network

Non-convexity During Training

• Linear models were convex
• All local optima are global optima

• All reasonable optimization methods will
find a global optimum

• Neural Networks are non-convex
• Very hard to find global optimum

• Different optimization techniques will
converge to different local optima, some
of which are much better than others

• Choice of optimization method really
matters!

11

Local minimum
Gradient descent can get

stuck here!

Initialization

• For convex problems (e.g. logistic
regression), initialization doesn’t
matter much for final result
• We just initialize parameters to all 0’s

• For neural networks, initialization
matters a lot!
• Optimization problem is non-convex

• Where you start determines what
parameters you learn

12

Local minimum
If you initialize here,
you get stuck here!

The problem with all-0’s initialization

• What if we initialize with all
0’s?

• Problem: Symmetry
• All hidden units start out the

same, so gradients will be the
same for each

• Thus, all hidden units will stay
the same!

• We must initialize in a way
that breaks the symmetry

13

Input x

Hidden layer
“activations” z

Output y

.5

.5

.5

If every wj starts as 0 vector,
gradient update to each wj will be the same

Linear
regression

How to initialize neural networks?

• Solution: Initialize every parameter
to be a small random number

• How small? Depends on
“fan-in” din (# input features) and
“fan-out” dout (# output features)
• Suppose input xj’s have variance γ2

and wij’s have variance σ2

• For each row wi of W:

(Sum of din things, each with var. σ2 γ2)
• This gets bigger as din gets bigger
• So: choose σ2 proportional to 1/din

14

Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute
y = Wx + b

Params: W, b

dout

din

W

w1

wdout

How to initialize neural networks

• As usual, you have many options…

• He initialization:

• Xavier initialization:

• Pytorch default:

• Usually you don’t tune these as
hyperparameters, just use defaults

15

Also divides by dout

(But usually din and dout are similar size)

Uniform avoids large outliers
Note: Variance is proportional to 1/din

dout

din

W

w1

wdout
(mean 0, variance 2/din)

Importance of Learning Rate

• For convex problems (e.g. logistic
regression), learning rate doesn’t
change final result very much
• All reasonable values converge to the

same final answer

• For neural networks, learning rate
matters a lot!

16

Local minimum
Get stuck here if learning rate

is too small

Importance of Learning Rate

• Too small: Can’t take big enough
steps, don’t converge fast enough,
can get stuck in “flat” regions

• Too large: Steps are too large, too
erratic and doesn’t converge

• Need to carefully tune learning
rate

17

Importance of Learning Rate

18

Learning Rate Schedules

• Early on: We’re far from the
optimum, want to take large
steps

• Later on: We’re close to the
optimum, take small steps so
we don’t “overshoot”

• Solution: Start with large
learning rate, make it smaller
over time (“decay”)

19

Challenges for SGD

Problem #1: Ill-Conditioned loss

• Surface is very curved/steep in some
directions, but shallow in others

• High learning rate: Zig-zag along steep
direction

• Low learning rate: Move slowly along
shallow direction

Problem #2: Saddle Points

• Saddle Point = Area that is locally flat,
but neither minimum nor maximum

• SGD can get stuck here because
gradient is close to 0 -> take small steps

20

Idea #1: Momentum

21

Parameters w are “position”, they move
in the direction of momentum

Can handle ill-
conditioned problems!
Velocities cancel out
in vertical direction,

but build up in
horizontal direction

SGD
w = w - lr * grad

SGD + Momentum

Momentum builds in direction of gradient

v = beta1 * v + (1-beta1) * grad

w = w - lr * v

“velocity” or
“momentum”

Keep momentum,
with some “friction” beta1

Apply a “force”
in direction of gradient

SGD
w = w - lr * grad

RMSProp: Normalize gradient for each parameter

s = beta2 * s + (1-beta2) * grad**2

w = w - lr * grad / (sqrt(s) + eps)

Idea #2: Per-Parameter Learning Rates

22

For each parameter, divide gradient by the size of its gradient on average
Result: parameters with large average gradient (steeper directions)
get smaller effective learning rate

Tracks how big grad usually
is for each parameter

Weighted average of
elementwise squares

Elementwise square
Measures size of grad for each parameter

Elementwise sqrt Avoid divide by 0

Momentum: Build momentum in direction of gradient
v = beta1 * v + (1 – beta1) * grad # Add momentum

w = w – lr * v # Move in direction of momeutm

RMSProp: Adapt learning rate for each parameter separately
s = beta2 * s + (1-beta2) * grad**2 # Per-parameter scale

w = w – lr * grad / (sqrt(s) + eps) # Divide by scale

Adam: Combine Momentum and RMSProp, commonly used!
v = beta1 * v + (1 – beta1) * grad # Momentum

s = beta2 * s + (1-beta2) * grad**2 # RMSProp

w = w – lr * v / (sqrt(s) + eps) # Mix both update rules

Adam = Momentum + Per-Parameter LR

23

Comparison of SGD Variants

• SGD: Converges slowly

• Momentum: Moves much
faster, although can
overshoot

• Adagrad, RMSProp:
Converge quickly here

24

Comparison of SGD Variants

• One problem for non-
convex optimization:
Saddle points
• Function is locally flat but is

neither local minimum nor
local maximum

• Need to “escape” these to
find a minimum

• SGD gets stuck, other
methods can escape

25

Neural Network Hyperparameters

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?
• How many layers?
• Which activation function (sigmoid, tanh, ReLU)?

• Optimization
• Learning rate (initial & decay)
• Batch size
• Optimizer (momentum? Adam?)

• Regularization [Next!]

26

Announcements

• HW2 released, due Thursday, March 6

• Midterm exam Thursday, March 13
• In-class, 80 minutes

• We have both DMC 100 (this room) and SOS B4 (section room) reserved
• Last Name A-K: Go to DMC 100

• Last Name L-Z: Go to SOS B4

• Allowed one double-sided 8.5x11 sheet of notes

• Contact me ASAP about OSAS accommodations

• Section Friday: Pytorch

27

Today’s Plan

• Optimization (i.e., Training)
• Stochastic gradient descent

• Random initialization

• Learning rate schedules

• Momentum & Adam

• Regularization
• Early stopping

• Dropout

28

Regularization & Neural Networks

• Recall: Neural networks are universal
approximators

• This means they are prone to
overfitting!
• Low bias, high variance

• How to avoid overfitting too badly?

29

Weight decay (AKA L2 Regularization)

• L2 regularization is a valid strategy!
• Add an L2 penalty for every parameter in the model

• Often called “weight decay” when used with neural networks
• Because every gradient step, you add the update

30

Weights literally “decay” by factor of (1 – ηλ)

Early stopping

• Prevent overfitting by stopping training
before you overfit too much
• Every so often during training, save

“checkpoint” of model parameters and
evaluate development loss

• Remember which checkpoint had best
development loss

• If development loss keeps going up, stop
training

• Can be used for any model, but especially
common for neural networks
• For linear models, also common to train all the

way to convergence

31

Why Does Early Stopping Apply Regularization?

• Set of “Models that can be
learned after T steps” is smaller
than all possible models
• Parameters start as small random

numbers

• Early stopping prevents parameters
from changing too much from this
initialization

• Thus, model family is restricted!
• Similar to L2 regularization

32

All possible functions

All possible models for given architecture

All possible
random initializations

All possible
models after 4

SGD steps

Dropout

• During Training: Randomly “drop
out” some neurons by setting
their value to 0
• Drop each out with probability p

• To compensate, scale the other
neurons up by 1/p

• During testing, don’t do dropout

33

Dropout prevents “Co-adapted” features

• Without dropout, two neurons could
compute features that are only
useful in tandem
• E.g., A and B individually are bad

predictors, but A+B is useful predictor

• A and B are “co-adapted”

• Dropout disincentivizes this—each
neuron individually should be useful

34

https://www.youtube.com/watch?v=05MpycrocRI

Geoffrey Hinton
(Turing Award winner,
One of the “Godfathers” of
deep learning)

https://www.youtube.com/watch?v=05MpycrocRI

Dropout as an Ensemble

35

https://www.youtube.com/watch?v=05MpycrocRI

• “Ensemble” = average of multiple models’ predictions
• Usually better than using a single model
• Dropout ensembles over all 2^h different ways to

dropout the h hidden neurons

During training, each neuron is on 1/2 the
time and its value is 2x, so on average its
output is the same as during testing

https://www.youtube.com/watch?v=05MpycrocRI

Dropout as a Generalization of Naïve Bayes

• What about dropout at the input layer?
• If we dropout all but one feature xj, we are

just estimating P(y|xj), which is closely
related to P(xj|y):

• At test time, we use all features: same as
multiplying all P(xj|y)’s

• This is Naïve Bayes!

• Thus, Dropout at the input layer
generalizes Naïve Bayes

36

https://www.youtube.com/watch?v=05MpycrocRI

https://www.youtube.com/watch?v=05MpycrocRI

Neural Network Hyperparameters

• Architecture
• How many “neurons” (i.e., how big is hidden layer)?
• How many layers?
• Which activation function (sigmoid, tanh, ReLU)?

• Optimization
• Learning rate (initial & decay)
• Batch size
• Optimizer (momentum? Adam?)

• Regularization
• Weight decay
• Early stopping
• Dropout

37

Conclusion

• Optimization: Neural networks are non-convex, so choice of
optimization strategy really matters!

• Regularization: Neural networks are very good at overfitting, need
to counterbalance this

• Lots of hyperparameters!

38

	Default Section
	Slide 1: Neural Networks III: Optimization, Regularization
	Slide 2: Review: Neural Networks (2-layer MLP)
	Slide 3: Review: Training Neural Networks
	Slide 4: Review: Neural Building Blocks
	Slide 5: Neural Network Hyperparameters (so far)
	Slide 6: Today’s Plan
	Slide 7: Stochastic gradient descent
	Slide 8: Stochastic gradient descent
	Slide 9: Stochastic gradient descent
	Slide 10: Training Objective Comparison
	Slide 11: Non-convexity During Training
	Slide 12: Initialization
	Slide 13: The problem with all-0’s initialization
	Slide 14: How to initialize neural networks?
	Slide 15: How to initialize neural networks
	Slide 16: Importance of Learning Rate
	Slide 17: Importance of Learning Rate
	Slide 18: Importance of Learning Rate
	Slide 19: Learning Rate Schedules
	Slide 20: Challenges for SGD
	Slide 21: Idea #1: Momentum
	Slide 22: Idea #2: Per-Parameter Learning Rates
	Slide 23: Adam = Momentum + Per-Parameter LR
	Slide 24: Comparison of SGD Variants
	Slide 25: Comparison of SGD Variants
	Slide 26: Neural Network Hyperparameters
	Slide 27: Announcements
	Slide 28: Today’s Plan
	Slide 29: Regularization & Neural Networks
	Slide 30: Weight decay (AKA L2 Regularization)
	Slide 31: Early stopping
	Slide 32: Why Does Early Stopping Apply Regularization?
	Slide 33: Dropout
	Slide 34: Dropout prevents “Co-adapted” features
	Slide 35: Dropout as an Ensemble
	Slide 36: Dropout as a Generalization of Naïve Bayes
	Slide 37: Neural Network Hyperparameters
	Slide 38: Conclusion

