Introduction to Neural Networks

Robin Jia USC CSCI 467, Spring 2025 February 13, 2025

Review: Linear Models

- Examples: Linear regression, logistic regression, softmax regression
- Test time: Make a prediction based on learned parameters
 - E.g., linear regression: $y_{\text{pred}} = w^{\top}x + b$, after learning w and b
- Training time: Learn model parameters
 - Use gradient descent to minimize average loss over training dataset
 - E.g., linear regression:

$$\nabla_w L(w,b) = \frac{1}{n} \sum_{i=1}^n 2(w^\top x^{(i)} + b - y^{(i)}) \cdot x^{(i)}$$

Review: Linear Models

- Pro: Easier to understand what model is doing
- Pro: Optimizes convex loss function, gradient descent guaranteed to work
- Con: Can only learn linear function of input features
 - Workaround #1: Add more features—but this requires manual tweaking
 - Workaround #2: Use kernels, but only adds more features in pre-defined ways

Method for learning features from data

Powerful family of non-linear functions

Set of building blocks to create complex models

Method for learning features from data Powerful family of non-linear functions Set of building blocks to create complex models

Deep Learning

Machine Learning using Neural Network models

Method for learning features from data

A (toy) self-driving car example

- Three-way classification problem: Go left, straight, or right?
- What features are important here?
 - Is front clear?
 - Is left clear?
 - Is right clear?

A (toy) self-driving car example

- Suppose we had these features:
 - $z = [z_1, z_2, z_3]$
 - $z_1 = 1$ if front is clear, 0 else
 - z₂ = 1 if left is clear, 0 else
 - $z_3 = 1$ if right is clear, 0 else
- With this, we can do softmax regression:
 - Score for "straight": 20 z₁ 10
 - Score for "left": 10 z₂ 10
 - Score for "right": $10\overline{z_3} 10$
- Behavior
 - If everything is clear, go straight
 - If front is blocked, go left or right if those are clear
 - If everything is blocked, all equally bad

A (toy) self-driving car example

- How can we write the feature "is front clear"?
- Checking if the front is clear is itself a machine learning problem
 - Input = camera image/lidar data,
 Output = whether there is an obstacle
 - Obstacle near or far away?
 - Hard obstacle or a plastic bag?
- Can we make our features the outputs of another "classifier"?

Feature learning

2-layer Neural Network, Regression

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: w_j and b_j for each classifier, for each j=1, ..., h
 - h = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For regression: linear model with weight vector v and bias c

2-layer Neural Network, Binary Classification

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: w_j and b_j for each classifier, for each j=1, ..., h
 - *h* = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For binary classification: linear model with weight vector v and bias c
 - Only final layer changes when changing to a different task

2-layer Neural Network, Multi-Class Classification

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: *w_j* and *b_j* for each classifier, for each *j=1, ..., h*
 - *h* = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For multi-class classification: linear model with weight vector v_k and bias c_k for each class k
 - Only final layer changes when changing to a different task

- Plan: Train neural networks to mimic training data via gradient descent
- Initially, each neuron makes random classification "predictions." Some by chance are mildly useful

- Plan: Train neural networks to mimic training data via gradient descent
- Initially, each neuron makes random classification "predictions." Some by chance are mildly useful
- Final layer learns to use the most useful neurons to make final prediction

- Plan: Train neural networks to mimic training data via gradient descent
- Initially, each neuron makes random classification "predictions." Some by chance are mildly useful
- Final layer learns to use the most useful neurons to make final prediction
- The neurons that get used are incentivized to become better, to improve final accuracy

- Plan: Train neural networks to mimic training data via gradient descent
- Initially, each neuron makes random classification "predictions." Some by chance are mildly useful
- Final layer learns to use the most useful neurons to make final prediction
- The neurons that get used are incentivized to become better, to improve final accuracy
- Other neurons slowly change to surface useful information not already captured by other neurons
- Eventually, learned features are very useful and final layer can predict well!

Summary: Neural Networks as Feature Learners

- Neural networks learn new features from data
- Each learned feature is the output of a classifier using the original input features
- These classifiers can be "trained" to produce features that help the final layer make good predictions

Announcements

- Project proposals due next Tuesday @ 11:59pm
 - Submit as one group on gradescope (one submission per group)
- Section tomorrow: Cross-validation and evaluation metrics
 - Useful for project proposal when discussing how to evaluate your model
- Homework 2 released, due Thursday March 6

Powerful family of non-linear functions

Neural Networks are Non-linear Functions

- Second view: Neural networks compute a **non-linear** function of input to make predictions
 - As a result, neural networks can learn many functions that linear models cannot
- In most other ways, neural networks are very similar to their linear counterparts!
 - E.g., Training is mostly the same

2-layer Neural Network, Regression

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: w_j and b_j for each classifier, for each j=1, ..., h
 - h = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For regression: linear model with weight vector v and bias c

2-layer Neural Network in Matrix Form

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: w_j and b_j for each classifier, for each j=1, ..., h
 - Equivalently: matrix W (h x d) and vector b (length h)
 - *h* = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For regression: linear model with weight vector v and bias c
- Parameters of model are *θ* = (W, b, v, c)

Training Neural Networks

Linear Regression

Model's output is

$$g(x) = w^{\top}x + b$$

• (Unregularized) loss function is

$$\frac{1}{n} \sum_{i=1}^{n} (g(x^{(i)}) - y^{(i)})^2$$

Regression w/ Neural Networks

• Model's output is

$$g(x) = v^{\top} \sigma(Wx + b) + c$$

• Use same loss function, in terms of g!

$$\frac{1}{n} \sum_{i=1}^{n} (g(x^{(i)}) - y^{(i)})^2$$

Training objective for both types of models:

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, g(x^{(i)})\right), \text{ where } \ell(y, u) = (y - u)^2$$

Also applies for logistic regression, softmax regression, etc.

Training Neural Networks

General loss function:
$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, g(x^{(i)})\right)$$

• How to minimize? Gradient Descent!

$$\theta \leftarrow \theta - \eta \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell\left(y^{(i)}, g(x^{(i)})\right)$$

Average of per-example gradients

Model's output, depends on all model parameters θ (includes all layers)

- In practice, use a variant of traditional gradient descent
 - (Will discuss in 2 classes)

Importance of "Non-linearities"

With sigmoid, overall output is: $v^{\top}\sigma(Wx+b) + c$

Without sigmoid, overall output is:

$$v^{\top}(Wx+b) + c$$

= $(v^{\top}W)x + (v^{\top}b + c)$

- Having the sigmoid is very important!
- What if we skipped the sigmoid?
- Result: Just another way to write a linear function!
 - New "weight" is $v^T W$
 - New "bias" is $v^Tb + c$
- Having a simple non-linear function (like sigmoid) between the two linear operations enables us to learn a complex non-linear function!

Options for Non-linearities

- Many options work, just must be differentiable (for gradient descent)
 - Sometimes called "activation functions" or just "non-linearities"
- In practice: tanh and ReLU often preferred
 - Tanh: Better than sigmoid because outputs centered around zero
 - ReLU: Very fast to compute

Non-linearities make NN's more expressive

- XOR: Classic binary classification problem that can't be solved by linear classifier
- A 2-layer neural network can solve it!
 - I can choose values for the parameters that lead to perfect classification on this dataset
 - Conclusion: Neural networks are more expressive than linear models

$$\begin{array}{c} \mathbf{x_1} & \sigma(100 \cdot (-x_1 - x_2 + 0.5)) \\ \mathbf{x_2} & \overline{\sigma(100 \cdot (x_1 + x_2 - 1.5))} \end{array} \\ \end{array} \\ \mathbf{z_1} \\ \mathbf{z_2} \end{array}$$

$$x_1 \approx 1 \text{ if both are } 0, \approx 0 \text{ else}$$

$$x_1 \approx 1 \text{ if both are } 1, \approx 0 \text{ else}$$

$$x_2 \approx 1 \text{ if both are } 1, \approx 0 \text{ else}$$

$$x_1 \approx 0 \text{ else}$$

$$x_2 \approx 0 \text{ if } XOR(x_1, x_2) = 0$$

Universal Approximation

- Fact: **Any function** can be approximated by a 2layer neural network with enough hidden units
- 2-layer neural networks are thus "universal approximators"
 - Note: Also true for k-NN, SVM with RBF kernel...
- Proof sketch
 - First layer learns a bunch of indicator-like features like "is x > 1?", "is x > 2?", etc.
 - This divides space into a bunch of buckets of width 1
 - Second layer assigns correct value to each bucket
 - If you have enough hidden units, you can make buckets really small and approximate a function very well

Summary: Neural Networks as Non-linear Functions

- Neural Networks are a type of learnable non-linear function
 - Contrast with previous models, which are learnable linear functions
- Constructed from multiple layers, each of which have their own learnable parameters
- Non-linearities between layers make the model much more expressive—can represent any function with a big enough network and right choice of parameters
 - Whereas linear models just cannot learn certain functions, like XOR
- Learning process works the same way as for linear models

Multi-Layer Perceptron (MLP)

- What we saw so far is called a "2-layer perceptron"
- But we can add more layers!
 - Corresponds to more complex feature extractor
 - In practice, making networks "deeper" (more layers) often helps more than making them "wider" (more hidden units in each layer)
 - Layers are "fully connected" as each neuron depends on every neuron in previous layer

Set of building blocks to create complex models

Deep Learning as a Set of Building Blocks

- Neural Network = Many "layers" stacked on top of each other
 - Each "layer" takes in some input and computes some output
 - Simplest layers are basic building blocks, can build more complex layers from those
 - Arrangement of layers is called an "architecture"
- Deep Learning: Design suitable neural architectures with various reusable building blocks
 - This is the view of most deep learning programming libraries like pytorch

(1) Linear Layer

- Input x: Vector of dimension d_{in}
- Output y: Vector of dimension d_{out}
- Formula: y = Wx + b
- Parameters
 - W: d_{out} x d_{in} matrix
 - b: d_{out} vector
- In pytorch: nn.Linear()

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

(3) Loss Layer

- Inputs:
 - y_{pred}: shape depends on task
 - y_{true}: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:
 - Squared loss: y_{pred} is scalar, $z = (y_{pred} y_{true})^2$
 - Softmax regression loss: y_{pred} is vector of length C,

$$z = -\left(y_{\text{pred}}[y_{\text{true}}] - \log \sum_{i=1}^{C} \exp(y_{\text{pred}}[i])\right)$$

- Parameters: None
- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Building Linear Regression Training Loop

- Step 1: Compute the loss on one example at a time
 - Training example is (x, y)
 - x is vector of length d, y is scalar

Building Linear Regression Training Loop

- Step 1: Compute the loss on one example at a time
 - Training example is (x, y)
 - x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
- Step 3: Update all parameters with gradient descent update rule

Building a 2-layer MLP for Regression

- Steps for training are exactly the same!
- Step 1: Compute the loss on one example at a time
 - Training example is (x, y)
 - x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
 - Next class: Compute gradient automatically with backpropagation. Easy if each building block is differentiable!
- Step 3: Update all parameters with gradient descent update rule

Summary: Deep Learning as Building Blocks

- Power of deep learning: You can stack building blocks together any way you want
 - No "right" or "wrong" architecture, just different design decisions
 - Best architecture choice depends on the task and data
 - Endless possibilities for new architectures

Method for learning features from data Powerful family of non-linear functions Set of building blocks to create complex models