2/6/2024: Kernels Contd.

y	x_{1}	x_{2}
+1	2	3
-1	0	1

simple dataset
\(\xrightarrow[\substack{to add \\
features}]{\substack{trans form \\

each row}} \boldsymbol{y} \boldsymbol{- 1} |\)| x_{1} | x_{2} | 2 | x_{1}^{2} | x_{2}^{2} | $x_{1} x_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 0 | 1 | 0 |

Dateset w/ none
features

Let $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{6}$
be the function that does this transformation
One arawbolk of adding more features: Slocver runtime
For some ϕ, there are fest ways to compute $k(x, 2)=\phi(x)^{\top} \phi(2)$ for any $x, 2$
without competing $\phi(x)$ or $\phi(2)$ directly
Eg. Quadratic Kernel:

$$
c(x, 2)=\left(x^{\top} 2+1\right)^{2}=\phi(x)^{\top} \phi(2) \quad \text { where }
$$

fast to compute using just $\times \mathbb{Q} 2$
ie. $O(d)$
"Kerne trick"
worlearg with

than working
with big
lecture vectors

Polynomide Kernel: For any degree $p \quad(=2,3,4 \ldots)$

$$
K(x, 2)={ }^{\left(x^{\top} 2+1\right)^{P}}=\phi(x)^{\top} \phi(2)
$$

where $\phi(4)$ is a really big feature vector $O(d)$
tompter (with all
cole $O\left(d^{P}\right)$

RBF Kernel: Fact:

$$
\exp \left(\frac{\|x-2\|^{2}}{26^{2}}\right)=\phi(x)^{\top} \phi(2)
$$

For some $\phi(x)$ that is infinite-dirrensional
Runtime Comparison: Let's use polynomial Kernel

Original Le.

- Map each $x^{(i)}$ to a $O\left(d^{p}\right)$-dim. vector $\phi\left(x^{(i)}\right)$
- Training: 1 iteration takes $O\left(n^{p}\right)$
- Testing: $O\left(d^{p}\right)$
(because dot product take $O(d P)$)
Better dependence on n
of legree P Kernelized L.R.
- Use kernel trick
- Training: 1 iteration takes $O\left(n^{2} \cdot d\right)$
- Testing: Compute $\sum_{i=1}^{n} \alpha_{i} k\left(x, x^{(i)}\right)$
takes $O(n \cdot d)$
Better dependence on
Bad it very large dataset

Support Vector Machine (SVM)
Similar to logistic Regression
Differences:

- Binary classification
- Learn linear decision boundary
- Parameter to lear is $\omega \in \mathbb{R}^{d}$
- Decision boundary defined by

$$
\omega^{\top} x=0
$$

- Different loss function
- No probabilatic Story

SVM: Minimize the following loss:

$$
L(\omega)=\frac{1}{n} \sum_{i=1}^{n} \underbrace{[1-\underbrace{y^{0}}_{y^{(i)} \omega^{\top} x^{(i)}}}_{\text {margin }}]_{L_{2} \text { resconcaation }}^{\lambda^{\lambda\|\omega\|^{2}}}
$$

where $[z]_{+}=\left\{\begin{array}{ll}z & \text { if } z>0 \\ 0 & \text { else called "hinge loss" }\end{array}{ }^{\text {of margin }}\right.$

$\frac{\text { SUM }}{\text { - Ar points to }}$ to have margin ≥ 1
(ie, for trow decision boundary)

- llarl to stay small $\frac{12}{\| \text { wal }}$ to be large

Fact: Decision boundary deperals only on subset of data called support rectors

$$
\downarrow \quad=\text { points with margin } \leq 1
$$

Ideal ω is a lear combination only of support vectors
Connection to kernels:
we cav also kernelue SUMs, ie
write $\omega=\sum_{i=1}^{n} \alpha_{i} x^{(i)}$

$$
\hat{\imath}=0 \text { if } x^{(i)} \text { is not a }
$$

support vector

Test-timei Instead of $O(n \cdot d)$,
cost is O (\$support vectors \& d)
Takeaway: To use kernels, use SUM

