Generative Classifiers & Naïve Bayes

Robin Jia USC CSCI 467, Spring 2025 February 4, 2025

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	$\frac{\text{Binary Classification}}{y \in \{+1, -1\}}$	$\frac{\text{Multiclass classification}}{y \in \{1, 2,, C\}}$

	Linear Regression	Logistic Regression	Softmax Regression	
Task	<u>Regression</u> y is a real number	$\frac{\text{Binary Classification}}{y \in \{+1, -1\}}$	$\frac{\text{Multiclass classification}}{y \in \{1, 2,, C\}}$	
Parameters $w \in \mathbb{R}^d$ (what to learn)(d is dimension of x)		$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)	

	Linear Regression	Logistic Regression	Softmax Regression	
Task	<u>Regression</u> y is a real number	$\frac{\text{Binary Classification}}{y \in \{+1, -1\}}$	$\frac{\text{Multiclass classification}}{y \in \{1, 2,, C\}}$	
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)	
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ ²) Mean / (Depends Variance on w) (constant)	$p(y = 1 \mid x) = \sigma(w^{\top}x)$ Plot of $\sigma(z)$ vs. z	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)\top}x)}{\sum_{k=1}^{C} \exp(w^{(k)\top}x)}}_{\text{Normalizes to}}$	

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	$\frac{\text{Binary Classification}}{y \in \{+1, -1\}}$	$\frac{\text{Multiclass classification}}{y \in \{1, 2,, C\}}$
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ²) Mean (Depends Variance on w) (constant)	$p(y = 1 \mid x) = \sigma(w^{\top}x)$ Plot of $\sigma(z)$ vs. z	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)\top}x)}{\sum_{k=1}^{C} \exp(w^{(k)\top}x)}}_{\text{Normalizes to}}$
Loss function (measures how bad any choice of parameters is)	Derive using <u>Pr</u> Want to max Same as minimizi	inciple of Maximum Likeliho imize probability of data = ∏ ng negative log-likelihood =	$\frac{1}{\sum_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; w)}{\sum_{i=1}^{n} -\log p(y^{(i)} \mid x^{(i)}; w)}$

	Linear Regression	Logistic Regression	Softmax Regression
Task	<u>Regression</u> y is a real number	$\frac{\text{Binary Classification}}{y \in \{+1, -1\}}$	$\frac{\text{Multiclass classification}}{y \in \{1, 2,, C\}}$
Parameters (what to learn)	$w \in \mathbb{R}^d$ (d is dimension of x)	$w \in \mathbb{R}^d$	w ⁽¹⁾ ,, w ^(C) ∈ ℝ ^d (C*d total params)
Probabilistic Story (how did nature create the data?)	y ~ Normal(w ^T x, σ ²) Mean / (Depends Variance on w) (constant)	$p(y = 1 \mid x) = \sigma(w^{\top}x)$ Plot of $\sigma(z)$ vs. z	$p(y = j \mid x) = \underbrace{\frac{\exp(w^{(j)\top}x)}{\sum_{k=1}^{C} \exp(w^{(k)\top}x)}}_{\text{Normalizes to}}$
Loss function (measures how bad any choice of parameters is)	Derive using <u>Principle of Maximum Likelihood Estimation (MLE)</u> Want to maximize probability of data = $\prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; w)$ Same as minimizing negative log-likelihood = $\sum_{i=1}^{n} -\log p(y^{(i)} \mid x^{(i)}; w)$		
How to minimize loss	Gradient Descent or Normal Equations		Descent

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Discriminative Classifiers

- Train a model with parameters w to model p(y|x)
 - Logistic regression: $p(y=1|x) = \sigma(w^T x)$
- Note: We **do not** attempt to model p(x)!
 - **Given** an image *x*, classifier predicts whether it is a bird or not
 - Model does not try to describe what an image of a bird actually is
 - Only has to find some features that discriminate between birds and non-birds
- Methods like logistic regression & softmax regression are called "discriminative classifiers"

Today: Generative classifiers

- Instead of modeling p(y|x), model the entire joint distribution p(x, y) as the product p(y) * p(x|y)
 - *p(y)*: How often does each label occur? Easy
 - *p*(*x*/*y*): What is the space of all possible x's that have the label y? Can be complex

Prior: 25% of images are birds

If y=bird, If y=not bird, all possible x's include... all possible x's include...

Predicting with a Generative Classifier

- Suppose we have adequately learned p(y) and p(x|y)
- At test time, we get an input x
- How to predict? **Bayes Rule** Prediction of

abel given input

$$p(y \mid x) = \frac{p(y)p(x \mid y)}{p(x)}$$
estimates these

$$p(x) = \sum_{j} p(y = j)p(x \mid y = j)$$

Prior: 25% of images are birds

If y=bird, If y=not bird, all possible x's include...

Test input

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Setting: Text Classification

- Each input x is a document
 - Documents can have different numbers of words
 - $x^{(i)}_{j}$ is *j*-th word of *i*-th training example
- Each training example has corresponding label *y*

Training Data (sentiment analysis)

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Test Data x^{test} = "great directing"

Training a generative classifier

- We have to model two things
 - p(y): For each label y, what is the probability of y occurring?
 - p(x|y): For each label y, what corresponding x's are likely to appear?

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Modeling p(y)

- Modeling p(y) is easy: Just count how often each y appears!
- Let C be the number of possible classes
- Our model learns model parameter π_i = P(y=j) for each possible j
- Learning: $\pi_i = count(y=j)/n$
 - count(y=j): how often y=j in training data
 - *n*: number of training examples
 - Justification: Maximum likelihood estimate (same as HW0 coin flip problem)

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

In this dataset: $y \in \{+1, -1\}$ so **C=2**

5 training examples, so **n=5** y=+1 occurs 3 times, so $\pi_1 = 3/5 = 0.6$ y=-1 occurs 2 times, so $\pi_{-1} = 2/5 = 0.4$

Training a generative classifier

- We have to model two things
 - p(y): For each label y, what is the probability of y occurring?
 - p(x|y): For each label y, what corresponding x's are likely to appear?
 - This is much harder because x's are usually very complex objects
 - Different generative classification methods do different things
 - Today: Naïve Bayes method

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Modeling p(x|y) with Naïve Bayes

- Idea: Make a simplifying assumption about p(x|y) to make it possible to estimate
- Naïve Bayes assumption: Each word of the document x is conditionally independent given label y:

$$p(x \mid y) = \prod_{j=1}^{\infty} p(x_j \mid y)$$

- "Once label is chosen, each word is sampled independently"
- Note: This assumption does not have to be true (it definitely isn't), just has to be "close enough" so that classifier makes reasonable predictions
- Note: This text classification model is called *"Multinomial Naïve bayes"* because each word is drawn from a multinomial distribution

The Naïve Bayes Assumption

- Naïve Bayes posits its own probabilistic story about how the data was generated
- Step 1: Each y⁽ⁱ⁾ was sampled from the prior distribution p(y)
 - "First, decide to either write a positive or negative review"
- Step 2: Each word in x⁽ⁱ⁾ was sampled independently from the word distribution for label y⁽ⁱ⁾
 - "If you decided to be positive, write the document by randomly sampling positive-sounding words"
 - "If you decided to be negative, write the document by randomly sampling negative-sounding words"
 - Each word is independent when conditioning on y
- Models the entire process of generating x and y

Why is the Naïve Bayes Assumption OK?

- Clearly, documents generated in this way don't look very realistic!
- Why is this OK?
 - We don't need our p(x|y) to actually generate good documents
 - We just need it to be reasonable enough so that when given a real document *x*,

p(*x*/*true y*) > *p*(*x*/*other y*)

 Can be bad at modeling all the complex things that aren't related to y (grammar, writing style, etc.)

- Let V ("vocabulary") denote the set of words in the dictionary
- Model learns parameter $\tau_{wj} = P(w|y=j)$
 - For each word w in V
 - For each possible label j
 - Total of |V| * C parameters to learn
- How to learn? Just count!
 - For each word w and label j, learn:

τ_{wj} = <u>[#occurrences of w when y=j]</u> [total words when y=j]

- Again justified by MLE
- Note: This formula has a flaw, which we will fix later

Learning goal: Estimate all the ???'s

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	greatmovie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1

τ _{w,1}	word w	τ _{w,-1}	word w
???	acting	???	acting
???	and	???	and
???	amazing	???	amazing
???	directing	???	directing
???	great	???	great
???	movie	???	movie
???	score	???	score
???	terrible	???	terrible

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	greatmovie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1
- Count each word and divide by total

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	???	acting
1/7	and	???	and
1/7	amazing	???	amazing
0	directing	???	directing
2/7	great	???	great
1/7	movie	???	movie
1/7	score	???	score
0	terrible	???	terrible

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terribledirecting
3	+1	great movie
4	-1	terrible
5	+1	amazing

- For each of y=+1 and y=-1, want to learn a distribution over 8 words
- 7 total words appear with y=+1
- Count each word and divide by total
- Repeat for y=-1 (3 total words)

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	0	acting
1/7	and	0	and
1/7	amazing	0	amazing
0	directing	1/3	directing
2/7	great	0	great
1/7	movie	0	movie
1/7	score	0	score
0	terrible	2/3	terrible

Predicting with Naïve Bayes

- Given test example x^{test} = "great score"
- Compute p(x, y=+1)

 p(y=+1) * p(x|y=+1)
 p(y=+1) * p("great"|y=+1) * p("score"|y=+1)
 3/5 * 2/7 * 1/7 = 0.0245
- Compute p(x, y=-1) = p(y=-1) * p(x|y=-1) = p(y=-1) * p("great"|y=-1) * p("score"|y=-1) = 2/5 * 0 * 0 = 0
- By Bayes Rule:
 - P(y=+1|x) = 0.0245/(0.0245+0) = 1
 - Model is sure that y=+1, so predict +1
 - Always predict y with largest p(x, y)

Learned Parameters

 $\pi_1 = 3/5$

 $\pi_{-1} = 2/5$

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	0	acting
1/7	and	0	and
1/7	amazing	0	amazing
0	directing	1/3	directing
2/7	great	0	great
1/7	movie	0	movie
1/7	score	0	score
0	terrible	2/3	terrible

Announcements

- HW1 out, due next Tuesday (2/11)
- HW0 grades returned
 - Regrades will be open for 1 more week
 - Check Brightspace for solutions before asking for regrade
 - In general: will keep regrades open for 1 week after returning grades
- Project proposals due 2/18
 - Information posted on website, will discuss more on Thursday

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Problem #1: Too Many Zeroes

- Given test example x^{test} = "great directing"
- Compute p(x, y=+1)
 = p(y=+1) * p(x|y=+1)
 = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1)
 = 3/5 * 2/7 * 0 = 0
- Compute p(x, y=-1)

 p(y=-1) * p(x|y=-1)
 p(y=-1) * p("great"|y=-1) * p("directing"|y=-1)
 2/5 * 0 * 1/3 = 0
- By Bayes Rule:
 - P(y=+1|x) = 0/(0+0) = NaN
 - Model thinks this x^{test} is impossible!

Learned Parameters

 $\pi_1 = 3/5$

π₋₁ = 2/5

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	0	acting
1/7	and	0	and
1/7	amazing	0	amazing
0	directing	1/3	directing
2/7	great	0	great
1/7	movie	0	movie
1/7	score	0	score
0	terrible	2/3	terrible

Avoiding Zeroes with Laplace Smoothing

- Problem : Assign probability of 0 to many (word, label) pairs
- Solution: Laplace Smoothing
 - Imagine that every (word, label) pair was seem an additional λ times
 - λ is a new hyperparameter
 - New formula:

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	0	acting
1/7	and	0	and
1/7	amazing	0	amazing
0	directing	1/3	directing
2/7	great	0	great
1/7	movie	0	movie
1/7	score	0	score
0	terrible	2/3	terrible

Laplace Smoothing Example

Training Data

i	y ⁽ⁱ⁾	X ⁽ⁱ⁾
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Parameters to learn

τ _{w,1}	word w	τ _{w,-1}	word w
1/7	acting	0	acting
1/7	and	0	and
1/7	amazing	0	amazing
0	directing	1/3	directing
2/7	great	0	great
1/7	movie	0	movie
1/7	score	0	score
0	terrible	2/3	terrible

With no Laplace Smoothing

Laplace Smoothing Example

Training Data

i	y ⁽ⁱ⁾	X (<i>i</i>)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Parameters to learn

τ _{w,1}	word w	τ _{w,-1}	word w
(1+1)/(7+8)	acting	(0+1)/(3+8)	acting
(1+1)/(7+8)	and	(0+1)/(3+8)	and
(1+1)/(7+8)	amazing	(0+1)/(3+8)	amazing
(0+1)/(7+8)	directing	(1+1)/(3+8)	directing
(2+1)/(7+8)	great	(0+1)/(3+8)	great
(1+1)/(7+8)	movie	(0+1)/(3+8)	movie
(1+1)/(7+8)	score	(0+1)/(3+8)	score
(0+1)/(7+8)	terrible	(2+1)/(3+8)	terrible

Laplace Smoothing Example

Training Data

i	y ⁽ⁱ⁾	X (<i>i</i>)
1	+1	great acting and score
2	-1	terrible directing
3	+1	great movie
4	-1	terrible
5	+1	amazing

Parameters to learn

τ _{w,1}	word w	τ _{w,-1}	word w
2/15	acting	1/11	acting
2/15	and	1/11	and
2/15	amazing	1/11	amazing
1/15	directing	2/11	directing
3/15	great	1/11	great
2/15	movie	1/11	movie
2/15	score	1/11	score
1/15	terrible	3/11	terrible

Laplace Smoothing Avoids Zeroes

- Given test example x^{test} = "great directing"
- Compute p(x, y=+1)
 = p(y=+1) * p(x|y=+1)
 = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1)
 = 3/5 * 3/15 * 1/15 = 0.0080
- Compute p(x, y=-1)
 - = p(y=-1) * p(x|y=-1)
 - = p(y=-1) * p("great"|y=-1) * p("directing"|y=-1)
 - = 2/5 * **1/11 * 2/11**= **0.0066**
- By Bayes Rule:
 - P(y=+1|x) = 0.0080/(0.0080+0.0066) = .595
 - Model thinks y=+1 is more likely

Learned Parameters

 $\pi_1 = 3/5$

 $\pi_{-1} = 2/5$

τ _{w,1}	word w	τ _{w,-1}	word w
2/15	acting	1/11	acting
2/15	and	1/11	and
2/15	amazing	1/11	amazing
1/15	directing	2/11	directing
3/15	great	1/11	great
2/15	movie	1/11	movie
2/15	score	1/11	score
1/15	terrible	3/11	terrible

Problem #2: Numerical Underflow

- Given long test example x^{test} = "great directing and acting, amazing score, ..."
- Compute *p*(*x*, *y*=+1):
 - = p(y=+1) * p(x|y=+1)
 - = p(y=+1) * p("great"|y=+1) * p("directing"|y=+1) * p("and"|y=+1) * p("acting"|y=+1) *...
 - If you actually try to do this on a computer, you will get 0!
 - Multiplying many small numbers results in numerical underflow
 - Result is so small that it becomes 0

Learned Parameters

 $\pi_1 = 3/5$

 $\pi_{-1} = 2/5$

τ _{w,1}	word w	τ _{w,-1}	word w
2/15	acting	1/11	acting
2/15	and	1/11	and
2/15	amazing	1/11	amazing
1/15	directing	2/11	directing
3/15	great	1/11	great
2/15	movie	1/11	movie
2/15	score	1/11	score
1/15	terrible	3/11	terrible

Use Log Space to Avoid Underflow

- Given long test example x^{test} = "great directing and acting, amazing score, ..."
- Instead compute log p(x, y=+1):
 - $= \log p(y=+1) + \log p(x|y=+1)$
 - = log p(y=+1) + log p("great"|y=+1) +
 log p("directing"|y=+1) + log p("and"|y=+1)
 + log p("acting"|y=+1) + ...
 - This will not underflow, just adding together some negative numbers
- At test time: compute log p(x, y=j) for each j, choose the j with largest value

Learned Parameters

$$\pi_1 = 3/5$$

 $\pi_{-1} = 2/5$

τ _{w,1}	word w	τ _{w,-1}	word w
2/15	acting	1/11	acting
2/15	and	1/11	and
2/15	amazing	1/11	amazing
1/15	directing	2/11	directing
3/15	great	1/11	great
2/15	movie	1/11	movie
2/15	score	1/11	score
1/15	terrible	3/11	terrible

Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
 - First Attempt
 - Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors

Naïve Bayes for Feature Vectors

Text Classification Setting

- Each input *x* is a document
 - Documents can have different numbers of words
 - $x^{(i)}_{j}$ is *j*-th word of *i*-th training example
 - We made an implicit assumption that **position of words does not matter**—same distribution for 1st word of document, 2nd word, etc.

Feature Vector Setting

- Each input *x* is a feature vector
 - Each vector is of a fixed size d
 - $x^{(i)}_{j}$ is *j*-th feature of *i*-th training example
 - Each feature means something different! Can't treat them the same

Naïve Bayes for Feature Vectors

Most likely x = (rock, 2010's)

Most likely x = (country, 2020's)

Naïve Bayes for Feature Vectors

Discriminative vs. Generative Comparison

Logistic/Softmax Regression

- Usually higher accuracy, especially with large dataset
 - P(y|x) usually simpler to learn than P(x|y)
- Can do arbitrary feature processing. Input features can be related to each other, since we don't make any conditional independence assumptions

Naïve Bayes

- Learning is easier—no gradient descent, just count!
- Can handle missing input features—just ignore them when computing P(x|y)
- Easy to make small updates to the model
 - New training example? Just increment counts
 - New label? Fit P(x|y=new label), everything else stays the same

Summary: Generative Classifiers, Naïve Bayes

- Generative Classifier: Model p(y) and p(x|y)
 - Modeling p(y) is easy (just count how often each label occurs)
 - Modeling p(x|y) is hard
 - Naïve Bayes assumption: Each word/feature of x is **conditionally independent** given y
 - This makes modeling p(x|y) easy: Just count!
 - Need to be careful to avoid zeroes
 - Laplace Smoothing to avoid zero probability of unseen (word, label) pairs
 - Work in log space to avoid numerical underflow
 - Use Bayes Rule to compute prediction p(y|x) from p(y) and p(x|y)