## Generative Classifiers \& Naïve Bayes

Robin Jia
USC CSCI 467, Spring 2024
January 30, 2024

## Review: Supervised learning methods (so far)

|  | Linear Regression | Logistic Regression | Softmax Regression |
| :---: | :---: | :---: | :---: |
| Task | Regression $y$ is a real number | Binary Classification $y \in\{+1,-1\}$ | Multiclass classification $y \in\{1,2, \ldots, C\}$ |

## Review: Supervised learning methods (so far)

|  | Linear Regression | Logistic Regression | Softmax Regression |
| :---: | :---: | :---: | :---: |
| Task | Regression y is a real number | Binary Classification $y \in\{+1,-1\}$ | Multiclass classification $y \in\{1,2, \ldots, C\}$ |
| Parameters (what to learn) | $w \in \mathbb{R}^{d}$ ( $d$ is dimension of $x$ ) | $\mathrm{w} \in \mathbb{R}^{\text {d }}$ | $\begin{gathered} \mathrm{w}^{(1)}, \ldots, \mathrm{w}^{(\mathrm{C})} \in \mathbb{R}^{\mathrm{d}} \\ \left(\mathrm{C}^{\star} \mathrm{d} \text { total params }\right) \end{gathered}$ |

## Review: Supervised learning methods (so far)

|  | Linear Regressn | Logistic Regression | Softmax Regression |
| :---: | :---: | :---: | :---: |
| Task | Regression y is a real number | Binary Classification $y \in\{+1,-1\}$ | Multiclass classification $y \in\{1,2, \ldots, C\}$ |
| Parameters (what to learn) | $w \in \mathbb{R}^{d}$ ( $d$ is dimension of $x$ ) | $\mathrm{w} \in \mathbb{R}^{\text {d }}$ | $\begin{gathered} \mathrm{w}^{(1)}, \ldots, \mathrm{w}^{(\mathrm{C})} \in \mathbb{R}^{\mathrm{d}} \\ \left(\mathrm{C}^{\star} \mathrm{d} \text { total params }\right) \end{gathered}$ |
| Probabilistic Story (how did nature create the data?) | $y \sim \operatorname{Normal}\left(w^{\top} x, \sigma^{2}\right)$ <br> Mean <br> (Depends on w) | $p(y=1 \mid x)=\sigma\left(w^{\top} x\right)$ <br> Plot of $\sigma(z)$ vs. $z$ | $p(y=j \mid x)=\frac{\exp \left(w^{(j) \top} x\right)}{\sum_{\begin{array}{c} \sum_{k=1}^{C} \exp \left(w^{(k)} x\right) \\ \text { Normalizes to } \end{array}}^{\text {probability distribution }}}$ |

## Review: Supervised learning methods (so far)

|  | Linear Regression | Logistic Regression | Softmax Regression |
| :---: | :---: | :---: | :---: |
| Task | Regression y is a real number | Binary Classification $y \in\{+1,-1\}$ | Multiclass classification $y \in\{1,2, \ldots, C\}$ |
| Parameters (what to learn) | $w \in \mathbb{R}^{d}$ ( $d$ is dimension of $x$ ) | $w \in \mathbb{R}^{\text {d }}$ | $\begin{gathered} \mathrm{w}^{(1)}, \ldots, \mathrm{w}^{(\mathrm{C})} \in \mathbb{R}^{\mathrm{d}} \\ \left(\mathrm{C}^{\star} \mathrm{d} \text { total params }\right) \end{gathered}$ |
| Probabilistic <br> Story <br> (how did nature create the data?) | $y \sim \operatorname{Normal}\left(w^{\top} x, \sigma^{2}\right)$ <br> Mean <br> (Depends Variance on w) (constant) | $p(y=1 \mid x)=\sigma\left(w^{\top} x\right)$ <br> Plot of $\sigma(z)$ vs. $z$ $\square$ |  |
| Loss function (measures how bad any choice of parameters is) | Derive using Principle of Maximum Likelihood Estimation (MLE) <br> Want to maximize probability of data $=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; w\right)$ <br> Same as minimizing negative log-likelihood $=\sum_{i=1}^{n}-\log p\left(y^{(i)} \mid x^{(i)} ; w\right)$ |  |  |

## Review: Supervised learning methods (so far)

|  | Linear Regression | Logistic Regression | Softmax Regression |
| :---: | :---: | :---: | :---: |
| Task | Regression y is a real number | Binary Classification $y \in\{+1,-1\}$ | Multiclass classification $y \in\{1,2, \ldots, C\}$ |
| Parameters (what to learn) | $w \in \mathbb{R}^{d}$ ( $d$ is dimension of $x$ ) | $w \in \mathbb{R}^{\text {d }}$ | $w^{(1)}, \ldots, w^{(C)} \in \mathbb{R}^{d}$ <br> ( $\mathrm{C}^{\star}$ d total params) |
| Probabilistic Story (how did nature create the data?) | $y \sim \operatorname{Normal}\left(w^{\top} x, \sigma^{2}\right)$ <br> Mean (Depends Variance on w) (constant) | $p(y=1 \mid x)=\sigma\left(w^{\top} x\right)$ <br> Plot of $\sigma(z)$ vs. $z$ | $p(y=j \mid x)=\frac{\exp \left(w^{(j) \top} x\right)}{\sum_{k=1}^{\sum_{k=1}^{C} \exp \left(w^{(k)} x\right)}} \begin{aligned} & \text { Normalizes to } \\ & \text { probability distribution } \end{aligned}$ |
| Loss function (measures how bad any choice of parameters is) | Derive using Principle of Maximum Likelihood Estimation (MLE) <br> Want to maximize probability of data $=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; w\right)$ <br> Same as minimizing negative log-likelihood $=\sum_{i=1}^{n}-\log p\left(y^{(i)} \mid x^{(i)} ; w\right)$ |  |  |
| How to minimize loss | Gradient Descent or Normal Equations | Gradient Descent |  |

## Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
- First Attempt
- Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors


## Discriminative Classifiers

- Train a model with parameters w to model $p(y \mid x)$

- Logistic regression: $p(y=1 \mid x)=\sigma\left(w^{\top} x\right)$
- Note: We do not attempt to model $p(x)$ !
- Given an image $x$, classifier predicts whether it is a bird or not
- Model does not try to describe what an image of a bird actually is
- Only has to find some features that discriminate between birds and non-birds
- Methods like logistic regression \& softmax regression are called "discriminative classifiers"


## Today: Generative classifiers

- Instead of modeling $p(y \mid x)$, model the entire joint distribution $p(x, y)$ as the product $p(y)$ * $p(x \mid y)$
- $p(y)$ : How often does each label occur? Easy
- $p(x \mid y)$ : What is the space of all possible x's that have the label $y$ ? Can be complex

Prior: 25\% of images are birds

If $y=b i r d$,
all possible x's include... all possible x's include.


## Predicting with a Generative Classifier

- Suppose we have adequately learned $p(y)$ and $p(x \mid y)$
- At test time, we get an input $x$
- How to predict? Bayes Rule

Prediction of

$$
\begin{aligned}
& \text { label given input } \\
& \qquad \begin{aligned}
p(y \mid x) & =\frac{p(y) p(x \mid y)}{\text { Model }} \text { estimates these }
\end{aligned} \\
& x p(x)=\sum_{j} p(y=j) p(x \mid y=j)
\end{aligned}
$$

## Prior: 25\% of images are birds

If $y=b i r d$,
If $\mathrm{y}=$ not bird,
all possible x's include... all possible x's include..


Test input


## Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
- First Attempt
- Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors


## Setting: Text Classification

- Each input $x$ is a document
- Documents can have different numbers of words
- $x^{(i)} j$ is $j$-th word of $i$-th training example
- Each training example has corresponding label $y$


## Training Data (sentiment analysis)

| $\boldsymbol{i}$ | $y^{(i)}$ | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

Test Data<br>$x^{\text {test }}=$ "great directing"

## Training a generative classifier

- We have to model two things
- $p(y)$ : For each label $y$, what is the probability of $y$ occurring?
- $p(x \mid y)$ : For each label $y$, what corresponding x's are likely to appear?


## Training Data

| $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |  |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

## Modeling p(y)

- Modeling $\mathrm{p}(\mathrm{y})$ is easy: Just count how often each y appears!
- Let $C$ be the number of possible classes
- Our model learns model parameter $\pi_{j}=P(y=j)$ for each possible $j$
- Learning: $\pi_{j}=\operatorname{count}(y=j) / n$
- count $(y=j)$ : how often $y=j$ in training data
- $n$ : number of training examples
- Justification: Maximum likelihood estimate (same as HWO coin flip problem)


## Training Data

| $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |  |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

In this dataset: $\mathrm{y} \in\{+1,-1\}$ so $\mathbf{C =} \mathbf{2}$
5 training examples, so $\mathbf{n = 5}$
$y=+1$ occurs 3 times, so $\pi_{1}=3 / 5=0.6$
$y=-1$ occurs 2 times, so $\pi_{-1}=2 / 5=0.4$

## Training a generative classifier

- We have to model two things
- $p(y)$ : For each label $y$, what is the probability of $y$ occurring?
- $p(x \mid y)$ : For each label $y$, what corresponding x's are likely to appear?
- This is much harder because x's are usually very complex objects
- Different generative classification methods do different things
- Today: Naïve Bayes method


## Training Data

| $\boldsymbol{i}$ | $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

## Modeling p(x|y) with Naïve Bayes

- Idea: Make a simplifying assumption about $p(x \mid y)$ to make it possible to estimate
- Naïve Bayes assumption: Each word of the document $x$ is conditionally independent given label $y$ :

$$
p(x \mid y)=\prod_{j=1}^{d} p\left(x_{j} \mid y\right)
$$

- "Once label is chosen, each word is sampled independently"
- Note: This assumption does not have to be true (it definitely isn't), just has to be "close enough" so that classifier makes reasonable predictions


## The Naïve Bayes Assumption

- Naïve Bayes posits its own probabilistic story about how the data was generated
- Step 1: Each $y^{(i)}$ was sampled from the prior distribution $p(y)$
- "First, decide to either write a positive or negative review"
- Step 2: Each word in $x^{(i)}$ was sampled independently from the word distribution for label $y^{(i)}$
- "If you decided to be positive, write the document by randomly sampling positive-sounding words"
- "If you decided to be negative, write the document by randomly sampling negative-sounding words"
- Each word is independent when conditioning on $y$
- Models the entire process of generating $x$ and $y$

| $\mathrm{y}=1$ with probability | Step 1: <br> Choose y |  | $y=-1$ with |
| :---: | :---: | :---: | :---: |
|  |  | prob | lity $\pi_{-1}$ |
| Step 2: Sample positive words |  | Step 2: Sample negative words |  |
| P (word\|y=1) | word | P (wordly=-1) | word |
| 0.0050 | great | 0.0054 | bad |
| 0.0042 | the | 0.0045 | movie |
| 0.0035 | good | 0.0041 | worst |
| 0.0032 | movie | 0.0034 | is |
| ... | ... | ... | ... |
| "movie go great Sco | d the re..." | "worst ac movie | $\begin{aligned} & \text { ng is } \\ & \text { d..." } \end{aligned}$ |

## Why is the Naïve Bayes Assumption OK?

- Clearly, documents generated in this way don't look very realistic!
- Why is this OK?
- We don't need our $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$ to actually generate good documents
- We just need it to be reasonable enough so that when given a real document $x$,

$$
p(x \mid \text { true } y)>p(x \mid \text { other } y)
$$

- Can be bad at modeling all the complex things that aren't related to $y$ (grammar, writing style, etc.)

| $y=1 \text { with }$ <br> probability | Step 1: Choose y |  | $y=-1$ with |
| :---: | :---: | :---: | :---: |
|  |  | prob | bility $\pi_{-1}$ |
| Step 2: Sample positive words |  | Step 2: Sample negative words |  |
| P (wordly=1) | word | P (word\|y=-1) | word |
| 0.0050 | great | 0.0054 | bad |
| 0.0042 | the | 0.0045 | movie |
| 0.0035 | good | 0.0041 | is |
| 0.0032 | movie | 0.0034 | worst |
| ... | ... | ... | ... |
| "movie go great sco | d the e..." | "worst act movie bad | $\begin{aligned} & \text { ing is } \\ & \text { id...." } \end{aligned}$ |

## Learning with Naïve Bayes

- Let V ("vocabulary") denote the set of words in the dictionary
- Model learns parameter $\tau_{w j}=P(w / y=j)$
- For each word w in V
- For each possible label $j$
- Total of $/\left.V\right|^{*} C$ parameters to learn
- How to learn? Just count!
- For each word w and label j, learn:

$$
\tau_{w j}=\frac{[\# \text { occurrences of w when } y=j]}{\text { [total words when } y=j]}
$$

- Again justified by MLE
- Note: This formula has a flaw, which we will fix later


Learning goal: Estimate all the ???'s

## Learning with Naïve Bayes

## Training Data

| $\boldsymbol{y}$ | $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

- For each of $y=+1$ and $y=-1$, want to learn a distribution over 8 words
- 7 total words appear with $\mathrm{y}=+1$

Parameters to learn

| $\tau_{w, 1}$ | word w | $\tau_{w,-1}$ | word w |
| :---: | :---: | :---: | :---: |
| ??? | acting | ??? | acting |
| ??? | and | ??? | and |
| ??? | amazing | ??? | amazing |
| ??? | directing | ??? | directing |
| ??? | great | ??? | great |
| ??? | movie | ??? | movie |
| ??? | score | ??? | score |
| ??? | terrible | ??? | terrible |

## Learning with Naïve Bayes

## Training Data

| $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |  |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

- For each of $y=+1$ and $y=-1$, want to learn a distribution over 8 words
- 7 total words appear with $\mathrm{y}=+1$
- Count each word and divide by total

Parameters to learn

| $\tau_{w, 1}$ | word w | $\boldsymbol{\tau}_{\text {w }-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 1/7 | acting | ??? | acting |
| 1/7 | and | ??? | and |
| 1/7 | amazing | ??? | amazing |
| 0 | directing | ??? | directing |
| 2/7 | great | ??? | great |
| 1/7 | movie | ??? | movie |
| 1/7 | score | ??? | score |
| 0 | terrible | ??? | terrible |

## Learning with Naïve Bayes

## Training Data

| $\boldsymbol{i}$ | $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

- For each of $y=+1$ and $y=-1$, want to learn a distribution over 8 words
- 7 total words appear with $y=+1$
- Count each word and divide by total
- Repeat for $\mathrm{y}=-1$ (3 total words)

Parameters to learn

| $\tau_{w, 1}$ | word w | $\tau_{w,-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 1/7 | acting | 0 | acting |
| 1/7 | and | 0 | and |
| 1/7 | amazing | 0 | amazing |
| 0 | directing | 1/3 | directing |
| 2/7 | great | 0 | great |
| 1/7 | movie | 0 | movie |
| 1/7 | score | 0 | score |
| 0 | terrible | 2/3 | terrible |

## Predicting with Naïve Bayes

- Given test example xest $^{\text {te }}$ "great score"
- Compute $p(x, y=+1)$

$$
\begin{aligned}
& =p(y=+1) * p(x \mid y=+1) \\
& =p(y=+1) * p(\text { "great" } \mid y=+1) * p\left(\text { "score" }^{\prime} \mid y=+1\right) \\
& =3 / 5 * 2 / 7 * 1 / 7=0.0245
\end{aligned}
$$

- Compute $p(x, y=-1)$
$=p(y=-1)$ * $p(x \mid y=-1)$
$=p(y=-1)$ * $p($ "great" $\mid y=-1)$ * $p($ "score" $\mid y=-1)$
$=2 / 5$ * 0 * $0=0$
- By Bayes Rule:
- $P(y=+1 \mid x)=0.0245 /(0.0245+0)=1$
- Model is sure that $y=+1$, so predict +1
- Always predict $y$ with largest $p(x, y)$

| $\tau_{w, 1}$ | word w | $\boldsymbol{\tau}_{\text {w }-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 1/7 | acting | 0 | acting |
| 1/7 | and | 0 | and |
| 1/7 | amazing | 0 | amazing |
| 0 | directing | 1/3 | directing |
| 2/7 | great | 0 | great |
| 1/7 | movie | 0 | movie |
| 1/7 | score | 0 | score |
| 0 | terrible | 2/3 | terrible |

## Learned Parameters

$$
\pi_{1}=3 / 5 \quad \pi_{-1}=2 / 5
$$

## Announcements

- HW1 out, due next Tuesday
- HWO grades returned
- Regrades will be open for 1 more week
- Check blackboard for solutions before asking for regrade
- In general: will keep regrades open for 1 week after returning grades
- Friday section: Follow-up to last Thursday’s class
- Cross-validation: Another way to evaluate on held-out data
- Choosing an appropriate evaluation metric


## Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
- First Attempt
- Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors


## Problem \#1: Too Many Zeroes

- Given test example $x^{\text {test }}=$ "great directing"
- Compute $p(x, y=+1)$

$$
\begin{aligned}
& =p(y=+1) * p(x \mid y=+1) \\
& =p(y=+1) * p\left({ }^{\prime \prime} g r e a t " \mid y=+1\right) * p\left({ }^{\prime} \text { directing" } \mid y=+1\right) \\
& =3 / 5 * 2 / 7 * 0=0
\end{aligned}
$$

- Compute $p(x, y=-1)$

$$
\begin{aligned}
& =p(y=-1) * p(x \mid y=-1) \\
& =p(y=-1) * p\left(\text { "great" }^{\prime} \mid y=-1\right) * p\left(\text { "directing" }^{\prime} \mid y=-1\right) \\
& =2 / 5 * 0 * 1 / 3=0
\end{aligned}
$$

- By Bayes Rule:
- $P(y=+1 \mid x)=0 /(0+0)=\mathbf{N a N}$
- Model thinks this $\mathrm{x}^{\text {test }}$ is impossible!


## Learned Parameters

| $\tau_{w, 1}$ | word $w$ |
| :---: | :---: |
| $1 / 7$ | acting |
| $1 / 7$ | and |
| $1 / 7$ | amazing |
| $\mathbf{0}$ | directing |
| $2 / 7$ | great |
| $1 / 7$ | movie |
| $1 / 7$ | score |
| 0 | terrible |

$$
\pi_{1}=3 / 5
$$

| $\boldsymbol{\tau}_{w,-1}$ | word $\mathbf{w}$ |
| :---: | :---: |
| 0 | acting |
| 0 | and |
| 0 | amazing |
| $\mathbf{1 / 3}$ | directing |
| $\mathbf{0}$ | great |
| 0 | movie |
| 0 | score |
| $2 / 3$ | terrible |

$\pi_{-1}=2 / 5$

## Avoiding Zeroes with Laplace Smoothing

Parameters to learn

- Problem : Assign probability of 0 to many (word, label) pairs
- Solution: Laplace Smoothing
- Imagine that every (word, label) pair was seem an additional $\lambda$ times
- $\lambda$ is a new hyperparameter
- New formula:
$\tau_{w y}=\frac{[\# \text { occurrences of } w \text { when } y=i]+\boldsymbol{\lambda}}{[\text { total words when } y=j]+\mid \mathbf{| V | * \boldsymbol { \lambda }}}$
Add $\lambda$ for each word in $V$, so total \# of imaginary counts is $|\mathrm{V}|$ * $\lambda$


## Laplace Smoothing Example

Training Data

| $\boldsymbol{y}^{(i)}$ | $\boldsymbol{x}^{(i)}$ |  |
| :---: | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

Parameters to learn

| $\tau_{w, 1}$ | word w | $\tau_{w_{s}-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 1/7 | acting | 0 | acting |
| 1/7 | and | 0 | and |
| 1/7 | amazing | 0 | amazing |
| 0 | directing | 1/3 | directing |
| 2/7 | great | 0 | great |
| 1/7 | movie | 0 | movie |
| 1/7 | score | 0 | score |
| 0 | terrible | 2/3 | terrible |

With no Laplace Smoothing

## Laplace Smoothing Example

Training Data

| $\boldsymbol{y}^{(i)}$ |  | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

$\tau_{w y}=\frac{[\# \text { occurrences of } w \text { when } y=j]+\boldsymbol{\lambda}}{[\text { total words when } y=j]+\mid V] * \boldsymbol{\lambda}}$

Parameters to learn

| $\tau_{w, 1}$ | word w | $\tau_{w, 1}$ | word w |
| :---: | :---: | :---: | :---: |
| $(1+1) /(7+8)$ | acting | (0+1)/(3+8) | acting |
| $(1+1) /(7+8)$ | and | $(0+1) /(3+8)$ | and |
| $(1+1) /(7+8)$ | amazing | $(0+1) /(3+8)$ | amazing |
| $(0+1) /(7+8)$ | directing | $(1+1) /(3+8)$ | directing |
| $(2+1) /(7+8)$ | great | $(0+1) /(3+8)$ | great |
| $(1+1) /(7+8)$ | movie | $(0+1) /(3+8)$ | movie |
| $(1+1) /(7+8)$ | score | $(0+1) /(3+8)$ | score |
| $(0+1) /(7+8)$ | terrible | $(2+1) /(3+8)$ | terrible |

Laplace Smoothing with $\boldsymbol{\lambda}=1$

## Laplace Smoothing Example

Training Data

| $\boldsymbol{y}^{(i)}$ |  | $\boldsymbol{x}^{(i)}$ |
| :--- | :--- | :--- |
| 1 | +1 | great acting and score |
| 2 | -1 | terrible directing |
| 3 | +1 | great movie |
| 4 | -1 | terrible |
| 5 | +1 | amazing |

$$
\tau_{w y}=\frac{[\# \text { occurrences of w when } y=j]+\boldsymbol{\lambda}}{[\text { total words when } y=j]+|\mathbf{V}| * \boldsymbol{\lambda}}
$$

Parameters to learn

| $\tau_{w, 1}$ | word w | $\tau_{w,-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 2/15 | acting | 1/11 | acting |
| 2/15 | and | 1/11 | and |
| 2/15 | amazing | 1/11 | amazing |
| 1/15 | directing | 2/11 | directing |
| 3/15 | great | 1/11 | great |
| 2/15 | movie | 1/11 | movie |
| 2/15 | score | 1/11 | score |
| 1/15 | terrible | 3/11 | terrible |

Laplace Smoothing with $\boldsymbol{\lambda}=1$

## Laplace Smoothing Avoids Zeroes

- Given test example $x^{\text {test }}=$ " great directing"
- Compute $p(x, y=+1)$

$$
\begin{aligned}
& =p(y=+1) * p(x \mid y=+1) \\
& =p(y=+1) * p\left({ }^{\prime \prime}\right. \text { great"|y=+1) *p("directing"|y=+1) } \\
& =3 / 5 * 3 / 15 * 1 / 15=0.0080
\end{aligned}
$$

- Compute $p(x, y=-1)$

$$
\begin{aligned}
& =p(y=-1) * p(x \mid y=-1) \\
& =p(y=-1) * p\left({ }^{\prime} \text { great" } \mid y=-1\right) * p\left(\text { "directing" }^{\prime} \mid y=-1\right) \\
& =2 / 5 * 1 / 11 * 2 / 11=0.0066
\end{aligned}
$$

- By Bayes Rule:
- $P(y=+1 \mid x)=0.0080 /(0.0080+0.0066)=.595$
- Model thinks $\mathbf{y}=+1$ is more likely


## Learned Parameters

$$
\pi_{1}=3 / 5 \quad \pi_{-1}=2 / 5
$$

| $\tau_{w, 1}$ | word w | $\boldsymbol{\tau}_{\text {w }-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 2/15 | acting | 1/11 | acting |
| 2/15 | and | 1/11 | and |
| 2/15 | amazing | 1/11 | amazing |
| 1/15 | directing | 2/11 | directing |
| 3/15 | great | 1/11 | great |
| 2/15 | movie | 1/11 | movie |
| 2/15 | score | 1/11 | score |
| 1/15 | terrible | 3/11 | terrible |

Laplace Smoothing with $\boldsymbol{\lambda}=\mathbf{1}$

## Problem \#2: Numerical Underflow

- Given long test example $x^{\text {test }}=$ " great directing and acting, amazing score, ..."
- Compute $p(x, y=+1)$ :

$$
\begin{aligned}
= & p(y=+1) * p(x \mid y=+1) \\
= & p(y=+1) * p\left({ }^{\prime \prime} g r e a t " \mid y=+1\right) * \\
& p\left(\text { "directing" }^{\prime} \mid y=+1\right) * p\left(\text { "and" }^{\prime} \mid y=+1\right) * \\
& p\left({ }^{\prime a c t i n g " \mid} \mid y=+1\right) * . . .
\end{aligned}
$$

- If you actually try to do this on a computer, you will get 0 !
- Multiplying many small numbers results in numerical underflow
- Result is so small that it becomes 0


## Learned Parameters

| $\pi_{1}=3 / 5$ |  | $\pi_{-1}=2 / 5$ |  |
| :---: | :---: | :---: | :---: |
| $\tau_{w, 1}$ | word w | $\tau_{w_{j}-1}$ | word w |
| 2/15 | acting | 1/11 | acting |
| 2/15 | and | 1/11 | and |
| 2/15 | amazing | 1/11 | amazing |
| 1/15 | directing | 2/11 | directing |
| 3/15 | great | 1/11 | great |
| 2/15 | movie | 1/11 | movie |
| 2/15 | score | 1/11 | score |
| 1/15 | terrible | 3/11 | terrible |

Laplace Smoothing with $\boldsymbol{\lambda}=1$

## Use Log Space to Avoid Underflow

## Learned Parameters

- Given long test example $x^{\text {test }}=$ " great directing and acting, amazing score, ..."
- Instead compute $\log p(x, y=+1)$ :
$=\log p(y=+1)+\log p(x \mid y=+1)$
$=\log p(y=+1)+\log p(" g r e a t " \mid y=+1)+$ $\log p\left({ }^{\prime}\right.$ directing" $\left.\mid y=+1\right)+\log p(" a n d " \mid y=+1)$ $+\log p($ "acting" $\mid y=+1)+$...
- This will not underflow, just adding together some negative numbers
- At test time: compute $\log p(x, y=j)$ for each $j$, choose the $j$ with largest value

| $\tau_{w, 1}$ | word w | $\boldsymbol{\tau}_{\text {w }-1}$ | word w |
| :---: | :---: | :---: | :---: |
| 2/15 | acting | 1/11 | acting |
| 2/15 | and | 1/11 | and |
| 2/15 | amazing | 1/11 | amazing |
| 1/15 | directing | 2/11 | directing |
| 3/15 | great | 1/11 | great |
| 2/15 | movie | 1/11 | movie |
| 2/15 | score | 1/11 | score |
| 1/15 | terrible | 3/11 | terrible |

Laplace Smoothing with $\boldsymbol{\lambda}=1$

## Today's Plan

- Generative vs. Discriminative Classifiers
- Naïve Bayes for Text Classification
- First Attempt
- Two fixes to avoid zeroes
- Naïve Bayes for Feature Vectors


## Naïve Bayes for Feature Vectors

## Text Classification Setting

- Each input $x$ is a document
- Documents can have different numbers of words
- $x^{(i)} j$ is $j$-th word of $i$-th training example
- We made an implicit assumption that position of words does not matter-same distribution for 1st word of document, 2nd word, etc.


## Feature Vector Setting

- Each input $x$ is a feature vector
- Each vector is of a fixed size d
- $x^{(i)}{ }_{j}$ is $j$-th feature of $i$-th training example
- Each feature means something different! Can't treat them the same


## Naïve Bayes for Feature Vectors

- Step 1: Each $y^{(i)}$ was sampled from the prior distribution $p(y)$
- Step 2: For each j = 1, ..., d:

Feature $x^{(i)} j$ was sampled independently from the featurespecific
distribution for label $y^{(i)}$

Task: Predict if user will like album (y) given genre $\left(x_{1}\right)$ and decade $\left(x_{2}\right)$

|  | proba <br> Step 2: positive | with bility $\pi_{1}$ Sample features | Step <br> Choo |  | $y=-1$ wi probability <br> Step 2: negative | ample atures |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P\left(x_{1} \mid y=1\right)$ | genre | $\mathrm{P}\left(\mathrm{x}_{2} \mid \mathrm{y}=1\right)$ | decade | $\mathrm{P}\left(\mathrm{x}_{1}\right)$ | ) genre | $P\left(x_{2} \mid y=-1\right)$ | decade |
| 0.31 | rock | 0.33 | 2010's | 0.24 | country | 0.35 | 2020's |
| 0.24 | pop | 0.28 | 2020's | 0.22 | rock | 0.24 | 2010's |
| 0.23 | hip hop | 0.21 | 2000's | 0.18 | pop | 0.15 | 1990's |
| ... | ... | ... | ... | ... | ... | ... | ... |
| Most likely x = (rock, 2010's) |  |  |  | Most likely $\mathrm{x}=$ (country, 2020's) |  |  |  |

## Naïve Bayes for Feature Vectors

- How to learn? Count occurrences for each feature
- E.g., Count how many "liked" albums come from each genre
- Apply Laplace Smoothing to all (label, feature) pairs
- E.g., Imagine 1 additional album of each genre was liked

| $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{y}=1\right)$ | genre | $\mathrm{P}\left(\mathrm{x}_{2} \mid \mathrm{y}=1\right)$ | decade |
| :---: | :---: | :---: | :---: |
| ??? | country | ??? | 1950 's |
| ??? | hip hop | ??? | 1960 's |
| ??? | pop | ??? | 1970 's |
| $\ldots$. | $\ldots$ | $\ldots$ | $\ldots$ |


| $\mathrm{P}\left(\mathrm{x}_{1} \mid \mathrm{y}=-1\right)$ | genre |
| :---: | :---: |
| ??? | country |
| ??? | hip hop |
| ??? | pop |
| $\ldots$ | ... |


| $P\left(x_{2} \mid y=-1\right)$ | decade |
| :---: | :---: |
| $? ? ?$ | 1950 's |
| ??? | 1960 's |
| ??? | 1970 's |
| $\ldots$ | $\ldots$ |

## Discriminative vs. Generative Comparison

## Logistic/Softmax Regression

- Usually higher accuracy, especially with large dataset
- $P(y \mid x)$ usually simpler to learn than $P(x \mid y)$
- Can do arbitrary feature processing. Input features can be related to each other, since we don't make any conditional independence assumptions


## Naïve Bayes

- Learning is easier-no gradient descent, just count!
- Can handle missing input features-just ignore them when computing $\mathrm{P}(\mathrm{x} \mid \mathrm{y})$
- Easy to make small updates to the model
- New training example? Just increment counts
- New label? Fit P(x|y=new label), everything else stays the same


## Summary: Generative Classifiers, Naïve Bayes

- Generative Classifier: Model $p(y)$ and $p(x \mid y)$
- Modeling $p(y)$ is easy (just count how often each label occurs)
- Modeling $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$ is hard
- Naïve Bayes assumption: Each word/feature of $x$ is conditionally independent given $y$
- This makes modeling $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$ easy: Just count!
- Need to be careful to avoid zeroes
- Laplace Smoothing to avoid zero probability of unseen (word, label) pairs
- Work in log space to avoid numerical underflow
- Use Bayes Rule to compute prediction $p(y \mid x)$ from $p(y)$ and $p(x \mid y)$

