
1/25/2024: Bias/variance, MAP, Normal Equations
All possible moder Family =
functions from Set of functions that our
X to y algorithm can cearn
Bias Variance
what you
Bias Variance what you actually learn
Best possible Productor ("Rayes optimal") Best model In tamily
predictor in a line (a)
Bias: Error because a ssumptions of ML method don't exactly match real world
Bias: Error because a soumptions
don't exactly match real world
Variance: From the carse what wan beauter
Variance: Error because what you leave
1- Reconse fosition to a luider
Les Be conse fraining data is always incomplete, never cover all possible
Bios + Variance cases
= total error of model
Reduce Bias Reduce Variance
· Make fever assumptions make it easier to find the st model in family
Modes model in County
make model family (1) make model family smaller
bigger Swaller (Regularization Loes this)
() Add browning define
(2) Add training doctor

What is the probabilistic Story behind regularization? Idaa: Think about learning as usage of Bayes Rule. Bayesian probabilistic story: (1) Exists a prior distribution over we called P(w) 2) Whets sampled from p(w)
3) Dataset gets generated conditioned on w
from distribution p(D/W) Learning good: Inter must likely value of W ie maximize p(w10) called MAP unknown to observed

must be learned/inferred merstmum a posteriori p(wID) = p(w) (P(D/W) By Bayes Bule: PCD) likelhood of the dated New! re. what we Different choices of plw) maximize for MCE Does must depend give different types of regularization on w, can be ignored For example: let's assume each w_j is Gaussian centered out 0 (in particular: $p(w_j) = \frac{(w_j)^2}{6\sqrt{2}\pi^2}$ constant variance Assume mean is O Overal: b(m) is just II b(m!)

dxn nxd drn drn

= dxd

d-dim

yector

T Solution: W= (XTX) XTy Closed-form Solution! Question: What if XTX is not invertible? Scenario 1: n < d (we have too few examples

the train
examples

the features

the features d x^T d Each column of XTX is result of XT. Some vector, which is a linear combo of columns of XT But X' only has n columns, so all of XTX's columns live in n-dimensional I.e. rank (XTX) In < d Subspace So XTX is not invertible

Implication: XTX w = XTy has many solutions there's many w's fact perfectly fit training data we don't know which one 16 actually loost!

The we have high variance Rule of thumbs: Want to have n >d more training examples than features In practice: we can use pseudoinverse of XTX The pseudoinverse of a matrix A, denoted A[†]:

• A[†] = A⁻⁽ if A is invertible

• For any equation AX = b, x = A+6 is a solution Scenario 2: Duplicated fectures Suppose features its j are identical.

Then, XTX is not inventible! ω= [ω, ..., ω; ..., ω, ..., ωd] all ω'S

when
identical
performance
- 500
1500 Intritively: wis under-determined Honofler case of high variance. Rule of thumbs. Avoid (near-) deplicate features