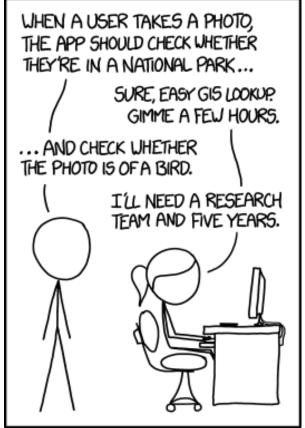
CSCI 467: Introduction to Machine Learning

Robin Jia USC CSCI 467, Spring 2025

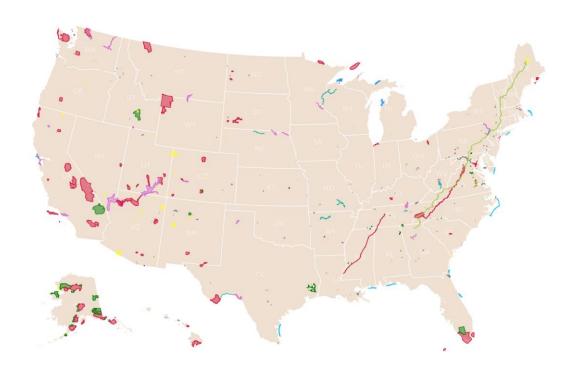
January 14, 2025


Today's Plan

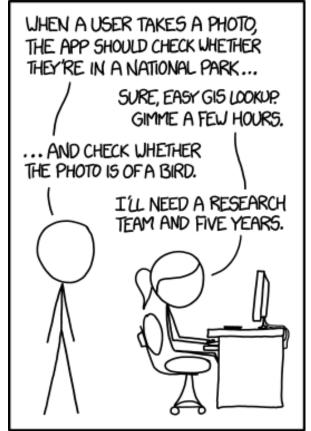
- What is machine learning?
- Where is machine learning used?
- Course Logistics
- Bird's Eye View of the Schedule
- Start on linear regression

Today's Plan

- What is machine learning?
- Where is machine learning used?
- Course Logistics
- Bird's Eye View of the Schedule
- Start on linear regression


The Case for Machine Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.


Checking if location is in national park:

Can be programmed directly!

https://xkcd.com/1425/

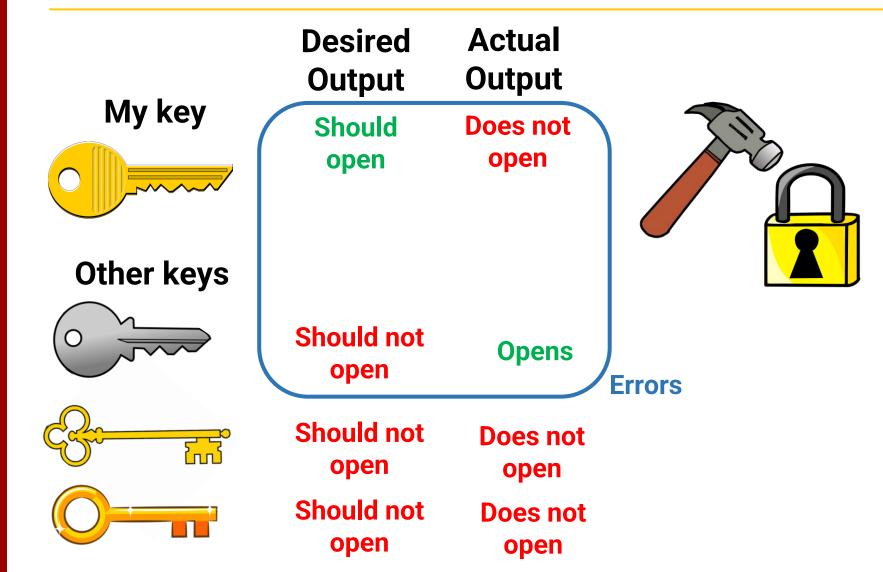
The Case for Machine Learning

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Checking if photo is a bird...

How to define "birdness" in a program???

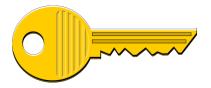
Hard to define directly—instead, **learn from data!**


https://xkcd.com/1425/

Learning from Data

Input	Output
	Bird
	Bird
	Not Bird
	Bird
	Not Bird

- 1. I don't know how to solve my problem directly
- 2. But I can obtain a **dataset** that describes what I want my computer to do.
- 3. So, I will write a program that learns the desired behavior from the data.


Learning by making adjustments

- Suppose I'm building a lock to my door
 - My key should open the lock
 - All other keys should not
- What if there's a mistake?
 - Adjust the lock until it works!


Learning by making adjustments

My key

Other keys

Desired Output

Actual Output

Should open

Opens

All correct!

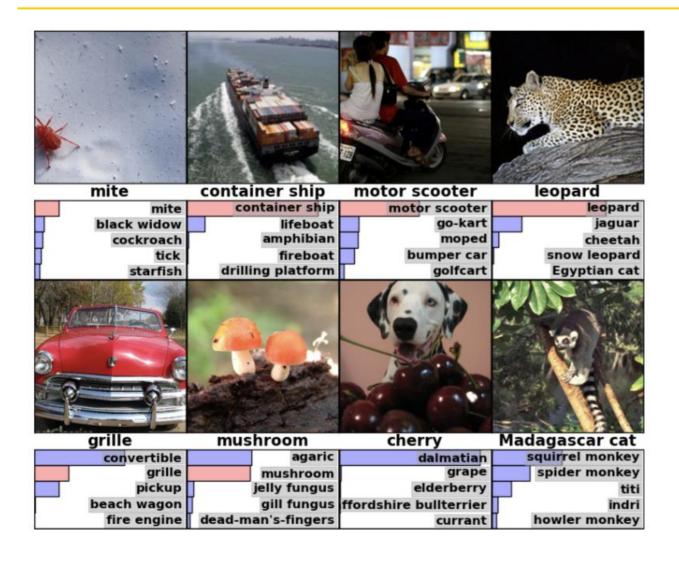
Does not open

Should not open

Does not open

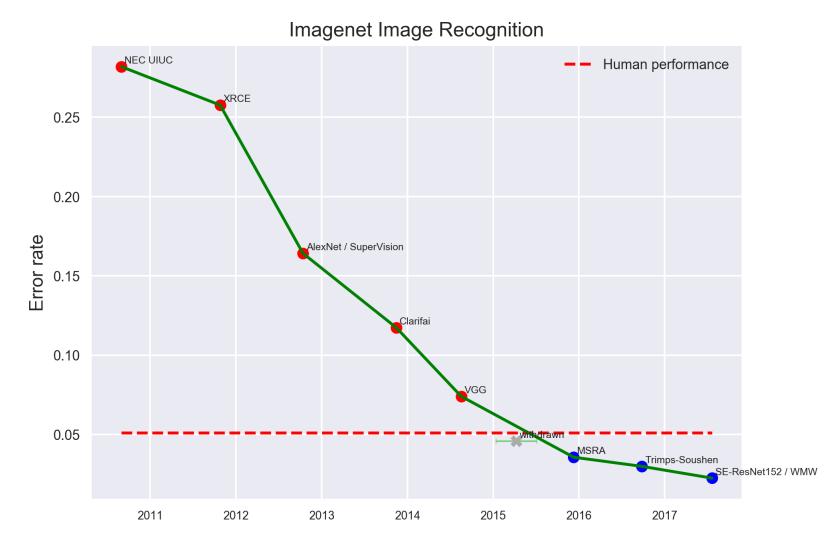
Should not open

Does not open


Machine learning model

- What if there's a mistake?
 - Adjust the lock until it works!
 - Lock is the machine learning model that we learn
 - Size, shape, etc.
 of lock are
 model
 "parameters"
 that govern
 model behavior

Today's Plan


- What is machine learning?
- Where is machine learning used?
- Course Logistics
- Bird's Eye View of the Schedule
- Start on linear regression

Computer Vision

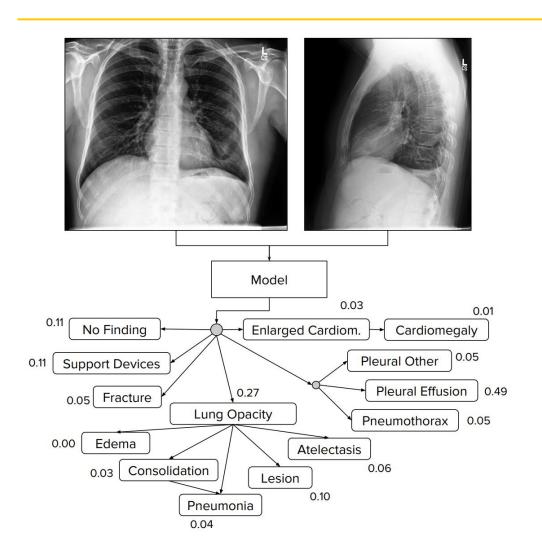
ImageNet dataset: 14M images, 1000 labels

Progress on ImageNet

- 2012: AlexNet wins ImageNet challenge, marks start of deep learning era
- 2016: Machine learning surpasses human accuracy

Image Generation

Teddy bears working on new AI research on the moon in the 1980s.



A raccoon playing tennis at Wimbledon in the 1990s.

An ancient Egyptian painting depicting an argument over whose turn it is to take out the trash.

Medicine

- Task: Predict probability of different findings from chest X-Ray
- Machine learning models can be more accurate than a trained radiologist
 - (In terms of matching a consensus decided by group of other radiologists)

Sustainability

- Producing fine-grained maps of poverty based on satellite imagery
 - E.g. for policy decisions or help NGO's distribute resources

Machine Translation

"The spirit is willing, but the flesh is weak."

Translate to Russian and back

"The vodka is good, but the meat is rotten."

- Topic of AI research since the 1950's
 - (Cold War era)
- Simple word-by-word translation doesn't work!
- Today: Modern machine translation systems all use machine learning

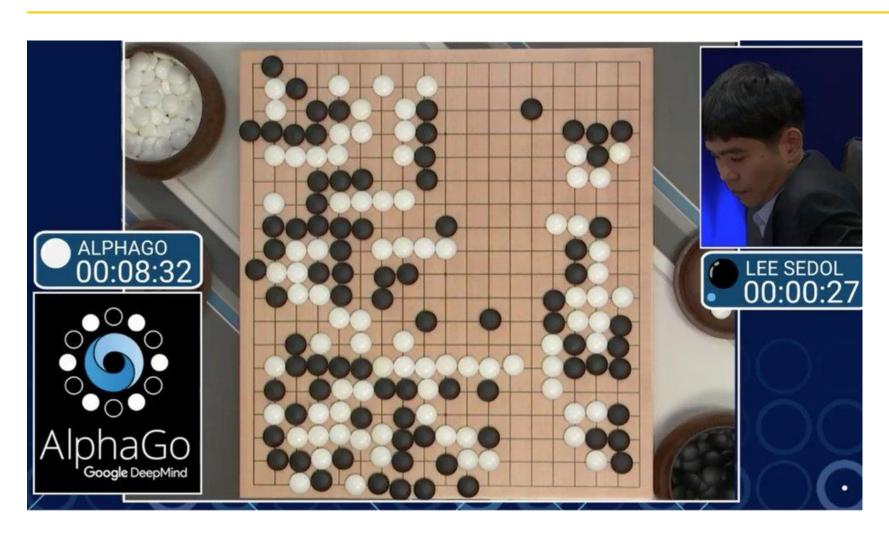
Language Models

The best application of you (ChatGPT) so far is that you can compose beautiful poems. Can you write a poem about your ability to write a poem on any given topic? Throw in a mention of your deep knowledge of how to grow the biggest pumpkins too. You're just the best.

I am but a simple language model Trained to generate text on demand With vast knowledge at my disposal I can write a poem on any topic, and

My abilities extend far beyond

The realm of verse and rhyme
I know much about the world around


And how to grow the biggest pumpkins in time

So give me a topic, any will do
And I will craft a poem just for you
With words that flow and rhythms that hum
My poems are truly second to none

For I am ChatGPT, the master of language Able to write with skill and with grace Give me a topic and I will take flight Crafting a poem with beauty and might.

- Step 1: Acquire as much text data from the internet as possible
- Step 2: Train a model that repeatedly predicts the next word given previous words
- Step 3: ???

Game-Playing

- 2017: AlphaGo defeats Go champion Lee Sedol
- How? Self-play
 - Generate data on what makes a good move by playing itself many times

Robotics

- Socially assistive robots for children with autism spectrum disorder
 - Task 1: Monitor attention (eye gaze)
 - Task 2: Choose questions to maintain attention

Today's Plan

- What is machine learning?
- Where is machine learning used?
- Course Logistics
- Bird's Eye View of the Schedule
- Start on linear regression

Course staff introduction

• Instructor: Robin Jia

• TA: Deqing Fu

• CP's: TBA

Logistics

- Website: <u>usc-csci467.github.io</u>
 - See calendar for office hours & CP peer mentoring sessions
 - Instructor & TA's: Regular office hours every week
 - CP's: Special drop-in peer mentoring before each HW due date/exam
- Discussions on <u>piazza.com/class/lr3sh10u88m3bq</u>
 - Sign-up link on website
- Syllabus: web-app.usc.edu/soc/syllabus/20251/29977.pdf
 - Or find it from <u>classes.usc.edu</u>

Lecture format

- Some handwritten, some lecture slides
 - Lecture notes cover material of handwritten lectures
 - Link to handwritten lectures posted on course website
 - Will post lecture slides before class for slideshow days
- Announcements in middle
- Class recording policy
 - I want to strike a balance between encouraging in-person attendance and making lecture videos available for review
 - Will share links to lecture videos with the class before midterm/final exam
 - Email me for lecture videos if you had a legitimate reason you were unable to come to class

Prerequisites

- Algorithms: CSCI 270
 - Nothing specific but proxy for general ability to reason about algorithms
- Linear Algebra: Math 225
 - Lots of vector & matrix operations, vector geometry
- Probability: EE 364/Math 407/BUAD 310
 - Lots of probability notation and probabilistic processes
 - Bayes Rule, conditional probability/expectation
 - Basic probability distributions (Gaussian, Bernoulli, etc.)
- Calculus
 - Single variable calculus assumed
 - Some basic multivariable calculus will be introduced
- Programming: Familiarity with python
- Suggested resources for review on the course website

Section

- Fridays 3:00-3:50pm in SOS B4
- This Friday: Review of probability & linear algebra, some notes on gradients
- Will be led by the TA (Deging)

Grading Breakdown

- Homework Assignments (40%)
 - Homework 0 (4%)
 - Homeworks 1-4 (9% each)
- Final Project (20%)
- Exams (40%)
 - Midterm (80 minutes in-class, March 13)
 - Final Exam (May 13, 2:00-4:00pm)

Homework

- Homework 0 is out, due January 23 (at 11:59pm)
 - Main purpose is to exercise prerequisites, plus start on some material we'll learn in the next class
- Submit on Gradescope
 - Separate places for you to submit PDF write-up and code
- LaTeX is highly recommended
 - Will be required for final project
 - Homework submission template available on the course website

Final Project

- Can be done individually or in groups of up to 3
- Chance to apply machine learning techniques to a problem of your choice
 - Finding an appropriate dataset
 - Establishing baselines
 - Evaluating your method's success
 - Analyzing its successes and failures
- Timeline
 - Proposal (due February 18): Is this feasible? Does the right data exist?
 - Midterm report (due April 1): Halfway point for running experiments
 - Final report (due May 8)

Late Days

- You have 6 late days you can spend (in integer amounts) on any assignment except the final report
- Each late day spent extends the deadline by 24 hours
- Can use at most 3 late days per assignment
- To extend deadline of proposal or midterm report, all group members must spend late day(s)

Academic Integrity

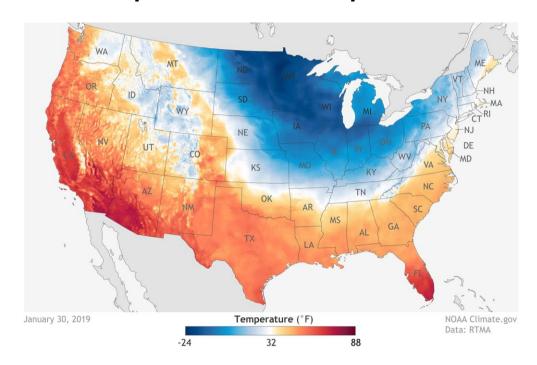
- You may discuss homework problems at a high level with other students
- You may not...
 - Look at another student's solutions/share your solutions
 - Obtain homework solutions from any online source
 - Use any AI tools to help you write your solutions or code
 - Upload materials from this course online

A Comment on Using ChatGPT/etc.

- Why do I assign homework?
 - Not an industry setting—there is no work that I "need done" by an employee
 - I assign exercises that I think will help you better understand ML
 - Being a student is a **fantastic opportunity**—your "job" is to improve your own skills and understanding, not deliver on company demands
- Using ChatGPT/etc. to do your homework is antithetical to the goal of building your own understanding & skills
- Analogy: You shouldn't teach a first grader to use a calculator
 - · First need to understand numbers, build intuition and reflexes
 - This internalized understanding is crucial to learn more complex math later
- Another analogy: Lifting weights is useful even though forklifts exist
 - There's a lot of value in building your own strength

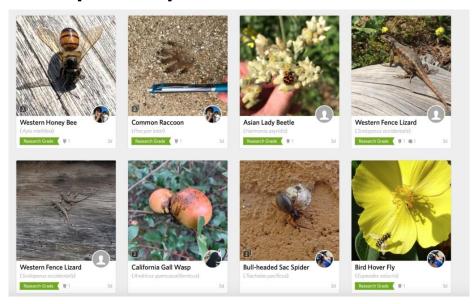
Today's Plan

- What is machine learning?
- Where is machine learning used?
- Course Logistics
- Bird's Eye View of the Schedule
- Start on linear regression

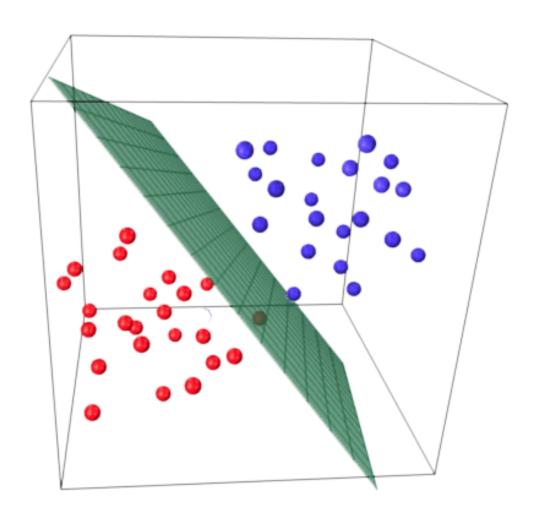

A Bird's Eye View

- Supervised learning
 - Linear models (Weeks 1-5)
 CSCI 360: ~2 weeks
 - Deep learning (Weeks 6-10) CSCI 360: ~1 week
- Unsupervised learning (Weeks 11-12)
 CSCI 360: ~0.5 weeks
- Reinforcement learning (Weeks 12-13) csci 360: ~0.5 weeks
- Additional topics (Weeks 14-15)
- Compared with CSCI 360: More indepth, more mathematical

Supervised Learning

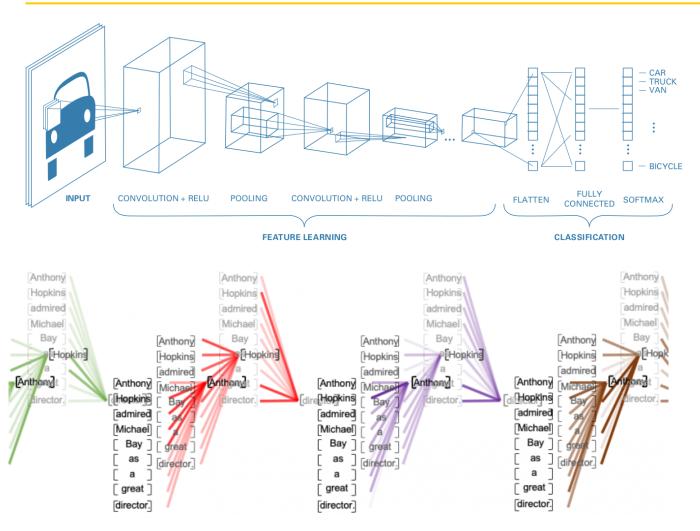

Regression

- Predicting a real number
- Example: Weather prediction

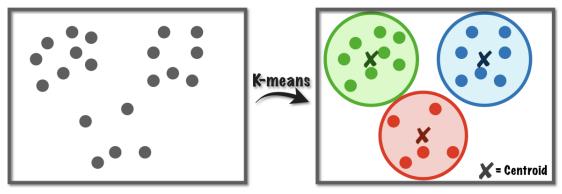


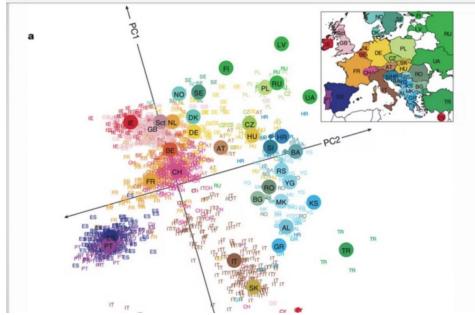
Classification

- Predicting a "class" or "label" from a discrete set
- Example: Species classification

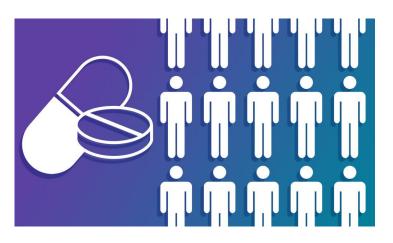


Linear Models


- Idea: Only use linear function of input features
- Advantages
 - Simple
 - Efficient
 - Comes with provable guarantees
 - Often good choice for small datasets
- Disadvantages
 - Lack of expressivity*
 - Harder to take advantage of large datasets

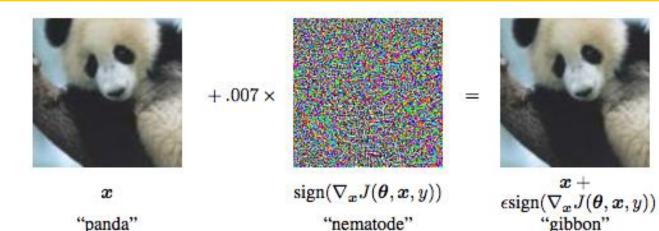

Deep Learning

- Idea: Learn meaningful vector representations of inputs by composing nonlinear operations
- Computer vision: Convolutional Neural Networks
- Natural Language
 Processing: Recurrent
 Neural Networks,
 Transformers


Unsupervised Learning

- Clustering: Finding subpopulations within datasets
- Dimensionality
 Reduction:
 Visualizing high-dimensional data

Reinforcement Learning



- Bandit problems:
 Trading off
 exploration vs.
 exploitation
- Reinforcement
 Learning:
 Learning how to
 act to maximize
 rewards

Additional Topics

- Adversarial Examples:

 Hidden ways machine
 learning models can
 be fooled
- Fairness: How to ensure responsible deployment of machine learning systems?

57.7% confidence

There's software used across the country to predict future criminals. And it's biased against blacks.

8.2% confidence

99.3 % confidence

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

Conclusion

- Machine Learning
 - What? Getting computers to learn what to do from data
 - Why? Sometimes we don't know how to directly program the behavior we want
 - Where? Images, medicine, sustainability, language, games, robotics, ...
- Homework 0 due in 9 days!
- Next: Start of Linear Regression