11/9/2023: Rein	nforcement Learning	
Supervised	Unsupervised	Rentarement
Supervised Learning	Leorning	Learning
	Dataset =	1 Algorithm creates
Datoset =	λ (η) (η) S	dataset as it runs
2 (x (0, y (0), }	{ κ _α , κ _{τη} , }	
	1	(2) Learning signal =
input desired output	No supervision	Remards for
, onloc	oot au	toking acrons
	a detaset	(ie. did a good thing
Someone hands us		or bod thing happen?
Algorithm takes d	alasol as injur,	you than creater then
	what's in the dataset	work than checker than
"Passive"		Learning (einning
Example Students	colortina clares	
- Action: Tale	e some classes, not	others
- Thre! Wh	at you know / what p	reneas your satisfu
- Powned: Ex	niorment job	0 20 0
- Reward: E.	solics, video gam	eS
Defining the	. world (No Learn	ning) how the world works
> (2) Learning b/c.	the agent doesn't know	how the world works
(1) Markov Decisi	ion trocess (MI	OP)
Formal description	of a world with State	of actions, rewards, etc
100		Stay O: Agent & contol
Example MDP:	11 (0)	- Nocture in countral
At each timestep.		prob= 43 Prob= 1/3
· Agent can sta	ey or quit quit	reword = 6 reword = 0
• It guit receive	\$10, gane ends \\"	2 Opp (S,a)
• If Stay:	2' C+ 60 ~ ~ ~ .	ne
	3: Get \$0, game ends	Prob = 1 Fuel
- Krobalality 7/	3: Get Sle, game courtinues	reward = 10

formal ingrachents of MDP: - Set of States S Ceg. possible configurations/locations of nobot) - Starting State Sphart (OR distribution over states) - Actions (s): Possible actions at state S - T(s,a,s'): Probabily of transitioning to state s' Starting at Stak S U talking action a - Reward (s, a, s'): Reward received when transitioning from S to S' after taking action or Unknown In the example MOP: T (Start, Stay, End) = 1/3 Kenard (Start, Stay, End) = 0 - Is End (s): Is s an end state? Game ends when reaching on end state Given a Known MDP, what should the agent do? [Policy] Strategy used by an agent
Formcely: mapping TC(S) -> a = Actions (s) Current State Chosen action chy? Visiting s multiple times has exact same transitions of remodels => bost action is same Value functions: The value $V_{\pi}(s)$ for policy π and state s is: Idiscounted) the expected sum of rewards when Storting ad s, use policy TC Discounting: Future rewards are less valuable - He each firmster, probability of survival < 1 we introduce a discount factor & E CO, 1] - probability of survival at each timestep eg. 8 = .99 we care about discounted sum if rewards For sequence (, , (a, (3), discounted Sum= (, + & r2 + & r3+...

Optimal Policies Vopt (s) = maximum possible expected discounted Sum of rewords Starting at 5 for any policy "optimal value" Qu(S,a) = maximum possible expected discounted

Sum of remords Starting at S and

"Q-value" forced to take action a $V_{opt}(s) = SO$ if Is End(s) $V_{opt}(s) = SO$ if Is End(s) $v_{opt}(s, a)$ else $v_{opt}(s) = SO$ Quart $(s, a) = \sum_{s' \in S} T(s, a, s')$ Reward $(s, a, s') + \sum_{s' \in S} T(s, a, s')$ Reward $(s, a, s') + \sum_{s' \in S} T(s, a, s')$ Si'e S Prob of Reward $(s, a, s') + \sum_{s' \in S} T(s, a)$ Soing to s' (no discount)

Optimal policy: T(x') = argmax $a \in Actions(s)$ Lesson: It we can estimate Dapt (Sia) well, of we can deduce the optimal policy · Believe would is an MDP · But T(s, a,s'), Revords(s, a,s') unknown to us RC training pseudocade: For episode = 1, 2, 3, ...: S. S Start Nor souple disvibution over start stocke -agent chases action at Tact (St) policy used to agent -Agent receives:

									Re	وس وسا	oro	ta	te	۲ŧ	S	· •	+ (<u> </u>			det vor		abo	wt
						٠ (هود	late M	<u>L</u> A	αί	jen L=	t's ca	nin	Dav ng	~N	æ	e/^ <u>`</u>	Ž						
						• 7	7	I	se	-wd	ر ر	ے ک	.t () :	١	0	٦	ak	. ,					
Lec	zerninz	<u>) a</u>	elgo	w HV	ım'	•	0	-(£C	W W	ièN-)												
(roal	١.	(eo	uΛ	(J or	η (_S/<	a)	-(eu	Q٧)	۲.	5,0	(،							
t	νe υ	مزرلا	W	cin	talv	١	Ю.	st ·	9V	eS3	,	Ć	Ì (_S	a)	λ	6	r e	od	ι (رۍ.	a)		
	2 ₅					_ (3	(<	2	a	4)	ı	(ال الاثر	r e	·5†	ımo	ite	0	٠-(
States	_																22							
	:	a'	مرک ر	3 9	,	a Cf	ons	>		9	ZCI/	() { '	ig no) del	S	a n	Q.	P	Yek	rete	er d	e	