## PCA visualization

## - Original data

- One example x for each person in dataset
- Each person represented by 600,000-dimensional vector of different genetic variants
- PCA
- Computes $\Sigma$
- $\mathrm{v}_{1}=$ eigenvector of $\Sigma$ with largest eigenvalue
- $\mathrm{v}_{2}=$ eigenvector of $\Sigma$ with second largest eigenvalue
- Plot
- $y$-axis shows $v_{1}{ }^{\top} x$ for each $x$ ("first principal component")

- $x$-axis shows $v_{2}{ }^{\top} x$ for each $x$ ("second principal component")


## Word Vectors \& word2vec

Robin Jia

USC CSCI 467, Fall 2023
November 7, 2023
With a lot borrowed from Jurafsky \& Martin, "Speech and Language Processing"
https://web.stanford.edu/~jurafsky/slp3/

## Previously: RNNs



- Idea: Recurrence!
- "Read" the input one word at a time
- At each step, update the hidden state of the network
- Model parameters to do this update are same for each step


## Previously: Word Vectors in RNNs

- How do we "feed" the next word to the RNN?

- Want to learn a vector that represents each word
- For each word $w$ in vocabulary $V$, have vector $v_{w}$ of size d
- |V| * d parameters needed
- Intuition: Similar words get similar vectors


## Previously: Transformers



Multi-head Attention
Feedforward
Multi-head Attention


John kicked the ball \#words $=\mathrm{T}=4$

- One transformer consists of
- Embeddings for each token of size d
- Let T =\#tokens, so initially T x d matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles
- Residual connections \& LayerNorm
- Byte pair encoding tokenization


## Today: Unsupervised word vectors

-What do we want?

- word2vec
- Solving analogies
- Bias in word vectors


## Lexical Semantics

- Goal: For each word $w$, have vector $v_{w}$ that represents word's meaning
- Lexical = word-level
- Semantics = meaning
-What do we want to represent?

- Synonymy (car/automobile) or antonymy (cold/hot)
- Hypernymy/Hyponymy (animal/dog)
- Similarity (cat/dog, coffee/cup, waiter/menu)
- Various features
- Sentiment (positive/negative)
- Formality
- All sorts of properties (Is a city? Is an action that a person can do?)


## The Distributional Hypothesis

- You hear a new word, ongchoi
- Ongchoi is delicious sauteed with garlic.
- Ongchoi is superb over rice.
- ...ongchoi leaves with salty sauces...
- Compare with similar contexts:
- ...spinach sauteed with garlic over rice...
- ...chard stems and leaves are delicious...
- ...collard greens and other salty leafy greens
- Conclusion: ongchoi is probably a leafy green similar to spinach, chard, and collard greens
- Distributional Hypothesis: Words appearing in similar contexts have similar meanings!
- Firth 1957: "You Shall Know a Word by the Company It Keeps"



## Today: Unsupervised word vectors

- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors


## Word vectors as a learning problem

- Want to learn vector $v_{w}$ for each word w
- What makes a vector good?
- Idea: $v_{w}$ should help you predict which words co-occur with w
- Captures distribution of context words for $w$
- Think of it as N binary classification problems, where N is size of vocabulary


## Creating a dataset

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
- We don't really care about these supervised learning problems
- We just care that we learn good vectors
- Task i: Did word w co-occur with the i-th word?

| Word $w$ ("input") | Context $w^{\prime}$ ("task") | y (label) |
| :--- | :--- | :--- |
| apricot | tablespoon | +1 |
| apricot | of | +1 |
| apricot | jam | +1 |
| apricot | a | +1 |

- Positive examples: Real cooccurrences within sliding window
- Negative examples: Random samples

Word w


Window of radius 2

## Creating a dataset

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
- We don't really care about these supervised learning problems
- We just care that we learn good vectors
- Task i: Did word w co-occur with the i-th word?
- Positive examples: Real cooccurrences within sliding window
- Negative examples: Random samples

Word w


Window of radius 2

| Word $w$ ("input") | Context $w^{\prime}$ ("task") | $y$ (label) |
| :--- | :--- | :--- |
| apricot | tablespoon | +1 |
| apricot | of | +1 |
| apricot | jam | +1 |
| apricot | a | +1 |
| apricot | seven | -1 |
| apricot | forever | -1 |
| apricot | dear | -1 |
| apricot | if | -1 |

## How to sample negatives?

- Choose a fixed ratio of negative:positive (e.g. 2)
- Baseline: Sample according to frequency of word $p(w)$ in the data
- Not ideal because very common words ("the") get sampled a lot
- Improvement: Sample according to $a$-weighted frequency

$$
p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime} \in V} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}
$$

- For $a<1$, high-frequency words get down-weighted
- Typically choose around $\alpha=.75$

Word w


Window of radius 2

| Word $w$ ("input") | Context $w^{\prime}$ ("task") | y (label) |
| :--- | :--- | :--- |
| apricot | tablespoon | +1 |
| apricot | of | +1 |
| apricot | jam | +1 |
| apricot | a | +1 |
| apricot | seven | -1 |
| apricot | forever | -1 |
| apricot | dear | -1 |
| apricot | if | -1 |

## word2vec model

- Parameters (all of dimension d):
- Word vector $v_{w}$ for each word ("features"-the actual word vectors)
- Context vector $c_{w}$ for each word ("classifier weights" for task corresponding to $w$ as context)
- Goal: $v_{w}$ can be used by linear classifier to do any of the $N$ "was this a context word" tasks

- Objective looks just like logistic regression:

$$
L(v, c)=\sum_{\substack{\left(w, w^{\prime}, y\right) \\ \text { word context }}}-\log \sigma\left(y \cdot v_{w}^{\top} c_{w^{\prime}}\right)
$$



## Training word2vec

- Strategy: Gradient descent
- Gradient updates essentially same as logistic regression
- Gradient w.r.t. c holds $v$ fixed, so it's like $v$ are fixed features

$$
\begin{array}{r}
\nabla_{c_{u}} L(v, c)=\sum_{\substack{\left(w, w^{\prime}, y\right): w^{\prime}=u \\
\text { Examples where } \mathrm{w}^{\prime}=\mathrm{u}}}-\sigma\left(y \cdot v_{w}^{\top} c_{u}\right) \cdot y \cdot v_{w} \\
\text { Same as logistic regression } \\
\text { where } v_{w} \text { is the input } \mathrm{x}
\end{array}
$$

- Gradient w.r.t. $v$ is symmetrical

$$
\begin{gathered}
\nabla_{v_{u}} L(v, c)=\sum_{\substack{\left(w, w^{\prime}, y\right): w=u \\
\text { Examples where } \mathrm{w}=\mathrm{u}}}-\sigma\left(y \cdot v_{u}^{\top} c_{w^{\prime}}\right) \cdot y \cdot c_{w^{\prime}} \\
\text { Same as logistic regression } \\
\text { where } c_{w^{\prime}} \text { is the input } \mathrm{x}
\end{gathered}
$$

## Is this a convex problem?

- Looks a lot like logistic regression...
- But it's not convex!
- Why?
- In logistic regression, we only optimize w.r.t. weights, features are constant
- Now we optimize both at the same time!
- Fact to remember: $f(x)=x_{1}$ * $x_{2}$ is not convex
- Consider points $[-1,1]$ and $[1,-1]$
- $f(x)=-1$ at both points
- But at the midpoint $[0,0], \mathrm{f}(\mathrm{x})=0$
- Corollary: We need to randomly initialize
- Must break symmetry, as in neural networks

$$
L(v, c)=\sum_{\left(w, w^{\prime}, y\right)}-\log \sigma\left(y \cdot v_{w}^{\top} c_{w^{\prime}}\right)
$$

Both are optimization variables


## word2vec overview

- Acquire large unsupervised text corpus
- Create positive examples for every word by using sliding window
- Create negative examples by randomly sampling context word from weighted word frequency
- Randomly initialize all $v$ and $c$ vectors
- Train on logistic regression-like loss with gradient descent
- Return $v$ vectors
- c vectors not needed-just helpers



## Today: Unsupervised word vectors

-What do we want?

- word2vec
- Solving analogies
- Bias in word vectors


## Analogies in vector space

- Apple is to tree as grape is to...
- In vector space, resembles a parallelogram
- Same relationship between apple and tree holds between grape and vine
- $v_{\text {vine }} \approx \underbrace{V_{\text {apple }}-V_{\text {ape }}}_{\text {tree }}+V_{\text {grape }}$



## Answering analogy queries

- Compute $v=v_{\text {tree }}-v_{\text {apple }}+v_{\text {grape }}$
- Find word $w$ in vocabulary whose $v_{w}$ is most similar to V
- Common choice: Cosine similarity

$$
\operatorname{cossim}(x, y)=\frac{x^{\top} y}{\|x\|\|y\|}
$$

(= cosine of angle between $x$ and $y$ )

- Typically need to exclude words very similar to the query word (e.g. "grapes")


## Visualizing Analogies



- Figure: Dimensionality reduction to 2 D , then plot words with known relationship
- Roughly same difference between male/female versions of the same word


## Visualizing Analogies



- Figure: Dimensionality reduction to 2 D , then plot words with known relationship
- Roughly same difference between base, comparative, and superlative forms of adjectives


## Today: Unsupervised word vectors

-What do we want?

- word2vec
- Solving analogies
- Bias in word vectors


## Machine learning is a tornado

- ...it picks up everything in its path
- Data has all sorts of associations we may not want to model



## What word associations are out there?

-What is programmer - man + woman?

- According to word vectors trained on news data, it's homemaker
- Existing data has tons of correlations between occupation and gender
- word2vec doesn't know what is a semantic relationship and what is a historical correlation
- "queen" is more related to "she" than "he" semantically
- "nurse" may co-occur more with "she" than "he" in available data but not a semantic relationship!


## Word vectors quantify gender stereotypes



- X-axis: Real percentage difference in workforce between women \& men
- Y -axis: Embedding bias = difference of distance from malerelated words and female-related words
- Strong correlation!


## Conclusion

- Distributional hypothesis: Words that appear in similar contexts have similar meanings
- word2vec: Learn vectors by inventing a prediction problem (did this word-context pair really occur in the text?)
- Vector arithmetic lets us complete relations
- Vectors capture both lexical semantics and historical biases


