
-23 : Gaussian Mixture Models (GMM)

How to think of clusters w/ non-spherical shape ?
2
.
What is a GMM?
5 Inference - Assign datapoint to cluster ?

&

4. Learning - Decide Shapes of Clusters & assign points
to clusters at same time
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what
is a GMM ? Goal: given data ,
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custers with custom shapes
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Probabilistic Story of GMMs :

- ot examples in dataset
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① Randomly sample Cluster Z:
where P(2i=j) = Ij

② Randomly sample example Xiv
from multivariate Gaussian with mean N covar,alle
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we never directly observe 2
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Inference :Interning a probability distribution of-

a latent random variable conditioned on

observed random variables

For GMMs: Given !
-

· Observed value x() for Xi
known parameters FI : K , Nik, ZiK

Compute P(2 : /X :: x" ; Kik , Nik, Zik)
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"Soft assignment"/
"Soft clustering"

"hard assignment"
/b it's all probabilistic



-How do ie learn Tik
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Zik ?

Algorithm
: Expectation- Maximization (EM)
-

Very general method whenever you have:
-Latent variables
- Unknown parameters

Strategy : Alternate between updating each one

~make
&E-step : Infer latent variable distribution I
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assignments
- based on

↑ ↓ Alternate using current guess of parameters K-means centroids

* Choose new
&Mep

: Choose parameters that best fat the -means centroids

data based on inferred 3 based on
distribution of latent variables tnewes

assignment

Step For each is1 , ..., n , we inter

Rij = P(Zi : j(Xi =x ; conver guess of parameters)
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M-Step Takes in :

- Actual rakes of all Xi's
*

- Inferred distributions of all I's I are on
learning

Cant do MLE who actual values of 2i's

But something similar :
we can maximize Expected Complete log-Likelihood
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