10/26/2023:(1-Means Chstering
Machine Learning

Training Dataset:
$D=\left\{\left(x^{(n)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$
\uparrow
input
to mosel
output

Gout'. Learn function

Training Dataset only contains x 's

$$
D=\left\{x^{(1)}, \ldots, x^{(n)}\right\}
$$

No "correct oripr" per example
Goal. Learn what Structure is present in the data
(1) Sub-poplation / group / clusters
(2) low-dimensional structure (subspace structure)
(3) Similarity / relationship structure
Input.

$$
\begin{aligned}
& \text { Input. } \\
& \text { Dataset }=\left\{x^{(1)}, \ldots, x^{(n)}\right\}
\end{aligned}
$$

Given': Ho chasers in data K
Outfoot: An assignment $z_{1}, z_{2}, \ldots, z_{n}$ where $z_{i} \in\{1, \ldots, k\}$
denotes custer we assign to $X^{(i)}$

Today: K-Means Clustering Algorithm
Idea 1: Write down a lois function to define what is a good assignment $z_{1} \ldots, z_{n}$
Flea 2: Each custer has a centroid N_{j} for $j=1, \ldots, K$ loss = how tor is $x^{(i)}$ from centroid it was assigned to

Loss function (formally):

$$
L\left(z_{1: n, N}^{i} N_{1: k}\right)=\sum_{i=1}^{n}\|x^{(i)}-\underbrace{N_{2 i}}_{\text {Conoid }}\|_{c l}^{2}
$$ If we only knew for the assigned the cluster assignments 2_{1} in cluster of $x^{(i)}$ ave cluster means $\mathrm{N}_{1: \mathrm{k}}$

how well could we reconstruct $\left\{x^{(1)}, \ldots, x^{(n)}\right\} ?$
Goal: minimize $L\left(Z_{1: n}, N_{1: k}\right)$ with respect to $Z_{l: n, N_{1 i k}}$
Note: Count di gradient descent because $2 i$'s are ulsicreta, cant toke a derilative writ $2 i$

Strategy: Alternating Minimization
(1) Start with a random choice of N_{1}, \ldots, N_{k}

Alternate until convergence ${ }^{2}$ when $21: n$ ' s and $N_{1: k}$'s stop
(2) Choose $21: n$ to minimize L given current $N_{1: K}$
(3) Choose $N_{1: K}$ to minimize L given Current $21: n$

Step (Choose each $N j$ to be a different ranchman $x^{(i)}$ from the dataset

Step 2: Minimizing L w.r.t. $2_{1: n}$ For each $i=1, \cdots, n$:
set $2_{i}=\underset{j=1, \ldots, k}{\operatorname{argmin}}\left\|x^{(i)}-N_{j}\right\|^{2}$
English: choose cluster whose Nj is closest

Step 3): Minimizing L w.r.t. $N_{1: K}$
Intuitively: N_{s} shall be mean of all points where $z_{i}=j$
minimize $\sum_{i=1}^{n} \| x^{(i)}-N_{z_{i}} l^{2}$

$$
=\sum_{j=1}^{k} \sum_{i=2_{i} i j}\left\|x^{(1)}-N_{j}\right\|^{2}
$$

For particular value of j :

$$
\operatorname{minimize}_{N_{j}} \sum_{i: 2_{i}=j} \mid\left(x^{(i)}-N_{j} \mid l^{2}\right.
$$

Take gradient w.r.t. N_{j}, set $=0$

$$
\begin{aligned}
& \sum_{i=2_{i}=j} 2 \cdot\left(x^{(i)}-N_{j}\right) \cdot(x)=O \\
& \sum_{i: z_{i}=j} x^{(i)}=\left|\left\{i: z_{i}=j\right\}\right| \cdot N_{j} \\
& \Rightarrow N j=\frac{1}{\left|2 i=2_{i}=j 3\right|} \sum_{i=z_{i}=j} x^{(i)}
\end{aligned}
$$

Average of points in cluster j

Note: Eventually we will converge why? At every step L gets better

No guarantee of converging to optimal solution
Randan initialization influences find clustering
le global minimum of L

How do you choose (b)?

- this is a hyper parameter

Wong answer: Fit on a dev set Why? langer always makes loss go down

$$
\begin{aligned}
& \xrightarrow{\substack{x \\
x \times x}} \\
& k=1: \text { Coss large } \\
& k=2 \text { : lorn goo down } \\
& K=6 \text { : loss even } \\
& \text { cower }
\end{aligned}
$$

loss
 own rapidly is.
loss goring dom slowly Choose k at elbow
K-means looks for spherical clusters Cbecause it uses Eucudean distance)

Goal: New dgouthn that cen learn location and

Shape of clusters

K -Means Closers

