
Pretraining Neural Networks;
Decision Trees, Ensembles

Robin Jia
USC CSCI 467, Fall 2023

October 24, 2023



Review: The Full Transformer

• Main Components
• Multi-head Attention
• Feedforward layers

• Also includes
• Positional 

embeddings
• Byte pair encoding
• Scaled dot product 

attention
• Residual 

connections 
between layers

• LayerNorm

2

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual 
connections + 
LayerNorm

BPE tokenization

Scale dot 
products



Review: Transformer Decoder

• How to do autoregressive 
language modeling?

• Modify multi-headed attention so 
that each token can only attend 
to previous/current token(s)
• Test time: Model generates tokens 

one at a time

• Training time: Can compute 
predictions for every token in 
sequence in parallel (fast!)

3

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10 –∞ –∞ –∞ 

0 7 –∞ –∞ 

-3 4 5 –∞ 

2 1 7 6

Keys

Q
u

e
ri

e
s



Neural Networks and Scale

• Deep learning models (e.g. Transformers) 
are nothing without training data!

• Neural networks are very expressive, but 
have tons of parameters
• Very easy to overfit a small training dataset

• Traditional view: Neural Networks are 
flexible but very “sample-inefficient”: they 
need many training examples to be good
• Reason: Low bias but high variance because 

many ways to perfectly fit the training data

4



Pretraining

• Neural networks learn to extract features 
useful for some training task
• The more data you have, the more successful this 

will be

• If your training task is very general, these 
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of 

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use 
neural networks with small datasets now, if they 
were pretrained appropriately!

5

Randomly 
initialized model

Pretrain on lots 
of data/compute

Pretrained
model

Adapt to 
smaller dataset

End task
model



ImageNet Features

Features learned by AlexNet trained on ImageNet

6

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



ImageNet Features

7

• ImageNet dataset: 14M images, 
1000-way classification

• Most applications don’t have this 
much data

• But the same features are still 
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow 

neural network) using ImageNet 
features



Masked Language Modeling (MLM)
• MLM: Randomly mask some words, train 

model to predict what’s missing
• Doing this well requires understanding 

grammar, world knowledge, etc.
• Get training data just by grabbing any text 

and randomly delete words
• Thus: Crawl internet for text data

• Transformers are good fit due to 
scalability
• Large matrix multiplications are highly 

optimized on GPUs/TPUs
• Don’t need lots of operations happening in 

series (like RNNs)

• Most famous example: BERT

8

John [MASK] the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

kicked
• Probably a verb
• Something a person 

can do to a ball



Fine-tuning

• Initialize parameters with BERT
• BERT was trained to expect every input to start 

with a special token called [CLS]

• Add parameters that take in the output at 
the [CLS] position and make prediction

• Keep training all parameters (“fine-tune”) on 
the new task

• Point: BERT provides very good initialization 
for SGD

9

[CLS] Angeles is …

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Los

Make 
prediction



What about ChatGPT and GPT-4???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling 

• Then fine-tuned with a method called RLHF (reinforcement learning from 
human feedback)

• We’ll return to this when we talk about reinforcement learning!

• GPT-4 is rumored to be an ensemble of many similar Transformer 
models
• More an ensembling in a few minutes

10



Announcements

• Project progress reports due October 31

• HW2 grades released, solutions on blackboard

• HW3 to be released shortly

• Thursday: We start unsupervised learning, back to iPad + lecture 
notes

11



Previously: Reliance on Linear Layers

• Linear models
• Linear regression, logistic regression, softmax 

regression
• Classification: Decision boundary is defined by

• Note: Combination of every feature xi

• Not necessarily how humans make decisions
• Can be hard to understand why a prediction was 

made

• Neural networks
• Linear layers are core building blocks
• Final decision boundary is linear function of 

learned features

12



Modeling decision making

• Human experts make 
complex decisions and 
predictions every day
• E.g., Given observations about 

a patient, what disease do they 
have?

• Doesn’t really look like a 
linear function; more like a 
flow chart

• Can we build models that 
emulate the human decision-
making process?

13



Decision Trees
• At each node, split 

on one feature

• Remember the best 
output at each leaf 
node
• Classification: 

Majority class
• Regression: Mean 

within node

• Given new example, 
find which leaf node 
it belongs to and 
predict the 
associated output

• Interpretable!

14

Age

Cholesterol

50

Age > 50?

Cholesterol 
> 240?

Cholesterol 
> 200?

No Yes

No Yes No Yes

240

200



Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error

15

100 96

20

24

45

40

50

200

220



Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error

16

100 96

20

24

45

40

50

200

220



Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error

17

100 96

20

24

45

40

50

200

220



Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error

18

100 96

20

24

45

40

50

200

220
Mean: 154

Mean: 35.8



Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error

19

100 96

20

24

45

40

50

200

220
Mean: 98

Mean: 22

Mean: 210

Mean: 45



Learning Decision Trees for Regression

• When do we stop splitting?
• If we split forever to nodes of size 1, we 

overfit

• Heuristic stopping criteria
• Minimum number of examples per node

• Maximum depth of tree

• Can go back afterwards and “prune” 
tree (i.e., merge nodes back together)

20

100 96

20

24

45

40

50

200

220
Mean: 98

Mean: 22

Mean: 210

Mean: 45



Learning decision trees for classification

• Basic idea is the same

• But how do we measure the 
goodness of a split?
• Option 1: Accuracy of majority 

classifier

• Option 2: Gini index

• pc = Empirical probability of class c 
within the current node

• Equals expected number of errors if 
you classify with the empirical 
distribution

21

Age

Cholesterol

50

240

200

p1 = 9/10, p-1 = 1/10
Gini index = 9/10 * 1/10 + 1/10 * 9/10



Handling Missing Features

• Some examples may be missing some features
• E.g., For some patients, you didn’t measure 

cholesterol level

• What to do at a node where you split on cholesterol?

• Idea: Surrogate variables
• During training, at each node, check which features 

act as surrogates of the feature you’re using (i.e., 
lead to similar splits)

• If original feature is missing, use a surrogate feature

• E.g., If “blood pressure > 130” is correlated with 
“Cholesterol > 240”, use blood pressure as surrogate 
for patients without cholesterol measurement

22

Age > 50?

Cholesterol 
> 240?

Cholesterol 
> 200?

No Yes

No Yes No Yes



Ensembling

• Create an “ensemble” of multiple models (e.g., multiple trees)

• Make final prediction by averaging/majority vote

23

Exercises?

Age > 45? Cholesterol 
> 260?

No Yes

No Yes
No Yes

BP > 130?

Cholesterol 
> 250?

Age > 35?

No Yes

No Yes

No Yes

Age > 50?

Cholesterol 
> 240?

Cholesterol 
> 200?

No Yes

No Yes No Yes

Tree 1 Tree 2 Tree 3



Ensembling and Trees

• An individual tree can capture complex patterns, but should not be too deep to avoid overfitting

• Thus it can only depend on a handful of features

• An ensemble of trees can leverage more features

24

Exercises?

Age > 45? Cholesterol 
> 260?

No Yes

No Yes
No Yes

BP > 130?

Cholesterol 
> 250?

Age > 35?

No Yes

No Yes

No Yes

Age > 50?

Cholesterol 
> 240?

Cholesterol 
> 200?

No Yes

No Yes No Yes

Tree 1 Tree 2 Tree 3



Bagging

• How do you learn different trees from 
the same dataset?

• Idea: Randomly resample the dataset!
• Given dataset with n examples, sample a 

new dataset of n examples with 
replacement

• Also known as “Bootstrapping”

• In expectation, each new dataset contains 
63% of the original dataset, with some 
examples duplicated

• Learn a tree on each resampled dataset

25

Ex. 
1

Ex. 
2

Ex. 
3

Ex. 
4

Ex. 
5

Original Dataset

Bootstrap sample

Ex. 
4

Ex. 
1

Ex. 
4

Ex. 
5

Ex. 
5



Random Forests

• Goal: Make the individual trees in 
the ensemble more different
• Thus, all elements of the ensemble 

are complementary

• Simple strategy: Before each split, 
choose a random subset of 
features as candidates for splitting
• Something like 𝑑 features if d total 

features
• Can even be randomly choosing 1 

feature

• Very good general-purpose learners 
in practice!

26



Ensembles and neural networks

• Random Forest: Each member of 
ensemble differs due to random 
resampling of data & feature choice

• Neural Networks: Already have 
randomness
• Initialization
• Order of examples for SGD
• Dropout
• So, bagging is not necessary

• In practice: Very common to ensemble 
neural networks!
• Compute vs. accuracy trade-off
• Rumor: GPT-4 is an ensemble of 8 

Transformers with 220 billion parameters 
each

27



Dropout as an Ensemble

• Why does Dropout work? One 
explanation: It learns a sort of 
ensemble

• Training time
• At each iteration, randomly drop out each 

neuron with probability p
• Each iteration trains a weaker “subnetwork” 

instead of full network

• Test time
• All neurons are active
• Result is an average/ensemble of all the 

subnetworks
• Note: Not exactly an ensemble in the usual 

sense because different subnetworks share 
parameters

28

Training time: Many “subnetworks”

Test time: Full network is average/ensemble
of all subnetworks



Conclusion

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data

• Decision trees
• Human-interpretable decision making

• Pairs well with ensembling, leading to random forests

• Ensembling also commonly applied to neural networks

29


	Default Section
	Slide 1: Pretraining Neural Networks; Decision Trees, Ensembles
	Slide 2: Review: The Full Transformer
	Slide 3: Review: Transformer Decoder
	Slide 4: Neural Networks and Scale
	Slide 5: Pretraining
	Slide 6: ImageNet Features
	Slide 7: ImageNet Features
	Slide 8: Masked Language Modeling (MLM)
	Slide 9: Fine-tuning
	Slide 10: What about ChatGPT and GPT-4???
	Slide 11: Announcements
	Slide 12: Previously: Reliance on Linear Layers
	Slide 13: Modeling decision making
	Slide 14: Decision Trees
	Slide 15: Learning Decision Trees for Regression
	Slide 16: Learning Decision Trees for Regression
	Slide 17: Learning Decision Trees for Regression
	Slide 18: Learning Decision Trees for Regression
	Slide 19: Learning Decision Trees for Regression
	Slide 20: Learning Decision Trees for Regression
	Slide 21: Learning decision trees for classification
	Slide 22: Handling Missing Features
	Slide 23: Ensembling
	Slide 24: Ensembling and Trees
	Slide 25: Bagging
	Slide 26: Random Forests
	Slide 27: Ensembles and neural networks
	Slide 28: Dropout as an Ensemble
	Slide 29: Conclusion


