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Review: The Full Transformer

• Main Components
• Multi-head Attention
• Feedforward layers

• Also includes
• Positional 

embeddings
• Byte pair encoding
• Scaled dot product 

attention
• Residual 

connections 
between layers

• LayerNorm
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Review: Transformer Decoder

• How to do autoregressive 
language modeling?

• Modify multi-headed attention so 
that each token can only attend 
to previous/current token(s)
• Test time: Model generates tokens 

one at a time

• Training time: Can compute 
predictions for every token in 
sequence in parallel (fast!)
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Neural Networks and Scale

• Deep learning models (e.g. Transformers) 
are nothing without training data!

• Neural networks are very expressive, but 
have tons of parameters
• Very easy to overfit a small training dataset

• Traditional view: Neural Networks are 
flexible but very “sample-inefficient”: they 
need many training examples to be good
• Reason: Low bias but high variance because 

many ways to perfectly fit the training data
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Pretraining

• Neural networks learn to extract features 
useful for some training task
• The more data you have, the more successful this 

will be

• If your training task is very general, these 
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of 

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use 
neural networks with small datasets now, if they 
were pretrained appropriately!
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ImageNet Features

Features learned by AlexNet trained on ImageNet
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ImageNet Features
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• ImageNet dataset: 14M images, 
1000-way classification

• Most applications don’t have this 
much data

• But the same features are still 
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow 

neural network) using ImageNet 
features



Masked Language Modeling (MLM)
• MLM: Randomly mask some words, train 

model to predict what’s missing
• Doing this well requires understanding 

grammar, world knowledge, etc.
• Get training data just by grabbing any text 

and randomly delete words
• Thus: Crawl internet for text data

• Transformers are good fit due to 
scalability
• Large matrix multiplications are highly 

optimized on GPUs/TPUs
• Don’t need lots of operations happening in 

series (like RNNs)

• Most famous example: BERT
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Fine-tuning

• Initialize parameters with BERT
• BERT was trained to expect every input to start 

with a special token called [CLS]

• Add parameters that take in the output at 
the [CLS] position and make prediction

• Keep training all parameters (“fine-tune”) on 
the new task

• Point: BERT provides very good initialization 
for SGD
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What about ChatGPT and GPT-4???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling 

• Then fine-tuned with a method called RLHF (reinforcement learning from 
human feedback)

• We’ll return to this when we talk about reinforcement learning!

• GPT-4 is rumored to be an ensemble of many similar Transformer 
models
• More an ensembling in a few minutes
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Announcements

• Project progress reports due October 31

• HW2 grades released, solutions on blackboard

• HW3 to be released shortly

• Thursday: We start unsupervised learning, back to iPad + lecture 
notes
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Previously: Reliance on Linear Layers

• Linear models
• Linear regression, logistic regression, softmax 

regression
• Classification: Decision boundary is defined by

• Note: Combination of every feature xi

• Not necessarily how humans make decisions
• Can be hard to understand why a prediction was 

made

• Neural networks
• Linear layers are core building blocks
• Final decision boundary is linear function of 

learned features
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Modeling decision making

• Human experts make 
complex decisions and 
predictions every day
• E.g., Given observations about 

a patient, what disease do they 
have?

• Doesn’t really look like a 
linear function; more like a 
flow chart

• Can we build models that 
emulate the human decision-
making process?
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Decision Trees
• At each node, split 

on one feature

• Remember the best 
output at each leaf 
node
• Classification: 

Majority class
• Regression: Mean 

within node

• Given new example, 
find which leaf node 
it belongs to and 
predict the 
associated output

• Interpretable!
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Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error
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Learning Decision Trees for Regression
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Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error
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Learning Decision Trees for Regression

• At each node, decide:
• Which feature to use

• Which threshold to split on

• Strategy
• Try each feature and all possible splits

• Greedily choose split that minimizes 
error
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Learning Decision Trees for Regression

• When do we stop splitting?
• If we split forever to nodes of size 1, we 

overfit

• Heuristic stopping criteria
• Minimum number of examples per node

• Maximum depth of tree

• Can go back afterwards and “prune” 
tree (i.e., merge nodes back together)
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Learning decision trees for classification

• Basic idea is the same

• But how do we measure the 
goodness of a split?
• Option 1: Accuracy of majority 

classifier

• Option 2: Gini index

• pc = Empirical probability of class c 
within the current node

• Equals expected number of errors if 
you classify with the empirical 
distribution
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Handling Missing Features

• Some examples may be missing some features
• E.g., For some patients, you didn’t measure 

cholesterol level

• What to do at a node where you split on cholesterol?

• Idea: Surrogate variables
• During training, at each node, check which features 

act as surrogates of the feature you’re using (i.e., 
lead to similar splits)

• If original feature is missing, use a surrogate feature

• E.g., If “blood pressure > 130” is correlated with 
“Cholesterol > 240”, use blood pressure as surrogate 
for patients without cholesterol measurement
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Ensembling

• Create an “ensemble” of multiple models (e.g., multiple trees)

• Make final prediction by averaging/majority vote
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Ensembling and Trees

• An individual tree can capture complex patterns, but should not be too deep to avoid overfitting

• Thus it can only depend on a handful of features

• An ensemble of trees can leverage more features
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Bagging

• How do you learn different trees from 
the same dataset?

• Idea: Randomly resample the dataset!
• Given dataset with n examples, sample a 

new dataset of n examples with 
replacement

• Also known as “Bootstrapping”

• In expectation, each new dataset contains 
63% of the original dataset, with some 
examples duplicated

• Learn a tree on each resampled dataset
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Random Forests

• Goal: Make the individual trees in 
the ensemble more different
• Thus, all elements of the ensemble 

are complementary

• Simple strategy: Before each split, 
choose a random subset of 
features as candidates for splitting
• Something like 𝑑 features if d total 

features
• Can even be randomly choosing 1 

feature

• Very good general-purpose learners 
in practice!
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Ensembles and neural networks

• Random Forest: Each member of 
ensemble differs due to random 
resampling of data & feature choice

• Neural Networks: Already have 
randomness
• Initialization
• Order of examples for SGD
• Dropout
• So, bagging is not necessary

• In practice: Very common to ensemble 
neural networks!
• Compute vs. accuracy trade-off
• Rumor: GPT-4 is an ensemble of 8 

Transformers with 220 billion parameters 
each
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Dropout as an Ensemble

• Why does Dropout work? One 
explanation: It learns a sort of 
ensemble

• Training time
• At each iteration, randomly drop out each 

neuron with probability p
• Each iteration trains a weaker “subnetwork” 

instead of full network

• Test time
• All neurons are active
• Result is an average/ensemble of all the 

subnetworks
• Note: Not exactly an ensemble in the usual 

sense because different subnetworks share 
parameters
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Conclusion

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data

• Decision trees
• Human-interpretable decision making

• Pairs well with ensembling, leading to random forests

• Ensembling also commonly applied to neural networks
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