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Review: Transformer at a high level

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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+ .5 + .3 + .01= .19

Review: Multi-headed Attention
• Input: T vectors x1, …, xT each of dimension d

• At each head, apply 3 separate linear layers to 
each xt:

• Query vectors qt = WQ * xt

• Keys vectors kt = WK * xt

• Value vectors vt = WV * xt

• Each linear layer has its own parameters maps from 
dimension d to dimension dattn

• To compute output ot:
• Dot product qt with each key vector ki

• Apply softmax to get probabilities pi

• Compute 𝑜𝑡 = σ𝑖=1
𝑇 𝑝𝑖 ∗  𝑣𝑖

• Have n heads with n different sets of 
parameters, then concatenate results

• Choose dattn = d/n so output is also dimension d

• Parameters WQ, WK, WV for each head must be 
learned by gradient descent

• Multi-headed attention is the most important 
idea of Transformers
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What do attention heads learn?

• This attention head seems to 
go from a pronoun to its 
antecedent (who the pronoun 
refers to)

• Other heads may do more 
boring things, like point to the 
previous/next word
• In this way, can do RNN-like 

things as needed

• But attention also can reach 
across long ranges
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Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in 
series

• Transformers
• Quadratic in sequence length (T x T 

matrices)

• But can be parallelized (big matrix 
multiplication)
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Today’s Plan

• Transformers in full detail

• Transformer decoders

• Pre-training
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The Full Transformer

Full Transformer also 
includes:

• Positional 
embeddings

• Byte pair encoding

• Scaled dot product 
attention

• Residual 
connections 
between layers

• LayerNorm
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Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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Embedding layer

• As before, learn a vector for each word 
in vocabulary

• Is this enough?
• Both attention and feedforward layers are 

order invariant
• Need the initial embeddings to also encode 

order of words!
• Otherwise, every occurrence of the same word 

would be treated the same

• Solution: Positional embeddings
• Learn a different vector for each index
• Gets added to word vector at that index
• Note: This means a Transformer model has 

some maximum sequence length it knows 
how to process
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Byte Pair Encoding

• Normal word vectors have 
a problem: How to deal with 
super rare words?
• Names? Typos?

• Vocabulary can’t contain 
literally every possible word…

• Solution: Tokenize string 
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens
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The Full Transformer

Full Transformer also 
includes:

• Positional 
embeddings

• Byte pair encoding

• Scaled dot product 
attention

• Residual 
connections 
between layers

• LayerNorm
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+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product qt 
with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning
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≈ 

Scaled dot product attention

• Earlier I said, “Dot product qt 
with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning
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The Full Transformer

Full Transformer also 
includes:

• Positional 
embeddings

• Byte pair encoding

• Scaled dot product 
attention

• Residual 
connections 
between layers

• LayerNorm
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Residual Connections

• Feedforward and multi-headed 
attention layers
• Take in T x d matrix X 

• Output T x d matrix O

• We add a “residual” connection: 
we actually use X + O as output
• Makes it easy to copy information 

from input to output

• Think of O as how much we 
change the previous value

• Same idea also common in 
CNNs!
• Reduces vanishing gradient issues
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Layer Normalization (“LayerNorm”)

• LayerNorm is just another type of layer/building block that “normalizes” a vector

• Input x: vector of size d

• Output y: vector of size d

• Formula:

• Parameters
• a & b are scalar parameters, let model learn good scale/shift

• Without these, all vectors forced to have mean=0, variance=1

• ɛ is hyperparameter: Some small number to prevent division by 0
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Mean of components of x

Variance of components of x

1. Normalize: Subtract by mean, 
divide by standard deviation

2. Rescale: Multiply by a, add b

x = [100, 200, 100, 0]

μ = 100

σ2 = ¼ * (02 + 1002 + 02 + 1002) = 5000 

Normalized x =

[0, 100, 0, -100] / 5000  

= [0, 1.4, 0, -1.4] (If ɛ ≈ 0)

Output = [b, 1.4a+b, b, -1.4a+b]

Normalized x



LayerNorm in Transformers

• After every feedforward & multi-headed attention layer, we also add 
Layer Normalization
• Input: vectors x1, …, xT

• Compute μ and σ2 for each vector

• Normalize each vector

• Use the same a and b to rescale each vector

• Is applied after residual connection
• Output of each layer is

• Why? Stabilizes optimization by avoiding very large values
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The Full Transformer

Full Transformer also 
includes:

• Positional 
embeddings

• Byte pair encoding

• Scaled dot product 
attention

• Residual 
connections 
between layers

• LayerNorm
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Announcements

• Project midterm report due October 31

• HW3 to be released early next week

• Tomorrow’s section: RNNs in pytorch
• How does an RNN decoder work?

• What do the gradients look like?
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Review: RNN Decoder Language Models

• At each step, predict the next word given current hidden state
• Test time: Model chooses a next word, that gets fed back in
• Training time: Model is fed the human-written words, tries to guess next 

word at every step
• RNN computations must happen in series at both training and test time

• Each hidden state depends on the previous hidden state
20
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Transformer autoregressive decoders

• How to do autoregressive language modeling?

• Test-time
• At time t, attend to positions 1 through t

• Happens in series

21

[BEGIN] John kicked the

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John kicked the ball

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10

0 7

-3 4 5

2 1 7 6
Q

u
e

ri
e

s

Keys



Transformer autoregressive decoders

• How to do autoregressive language 
modeling?

• Training time: Masked attention 
trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax

• But if generating autoregressively, 
time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Transformer autoregressive decoders

• How to do autoregressive language 
modeling?

• Training time: Masked attention 
trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax

• But if generating autoregressively, 
time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Transformer autoregressive decoders

• How to do autoregressive language 
modeling?

• Training time: Masked attention 
trick
• Recall: Attention computes Q x KT (T x 

T matrix), then does softmax

• But if generating autoregressively, 
time t can only attend to times 1 
through t

• Solution: Overwrite Q x KT to be –∞ 
when query index < key index

• All timesteps happen in parallel
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Today’s Plan

• Transformers in full detail

• Transformer decoders

• Pre-training
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Neural Networks and Scale

• Neural networks are very expressive, 
but have tons of parameters
• Very easy to overfit a small training 

dataset

• Traditionally, neural networks were 
viewed as flexible but very “sample-
inefficient”: they need many training 
examples to be good
• Computationally expensive

• Training at scale often uses GPUs
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Pretraining

• Neural networks learn to extract features 
useful for some training task
• The more data you have, the more successful this 

will be

• If your training task is very general, these 
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of 

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use 
neural networks with small datasets now, if they 
were pretrained appropriately!
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ImageNet Features

Features learned by AlexNet trained on ImageNet
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ImageNet Features
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• ImageNet dataset: 14M images, 
1000-way classification

• Most applications don’t have this 
much data

• But the same features are still 
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow 

neural network) using ImageNet 
features



Masked Language Modeling (MLM)
• MLM: Randomly mask some words, train 

model to predict what’s missing
• Doing this well requires understanding 

grammar, world knowledge, etc.
• Get training data just by grabbing any text 

and randomly delete words
• Thus: Crawl internet for text data

• Transformers are good fit due to 
scalability
• Large matrix multiplications are highly 

optimized on GPUs/TPUs
• Don’t need lots of operations happening in 

series (like RNNs)

• Most famous example: BERT
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Fine-tuning

• Initialize parameters with BERT
• BERT was trained to expect every input to start 

with a special token called [CLS]

• Add parameters that take in the output at 
the [CLS] position and make prediction

• Keep training all parameters (“fine-tune”) on 
the new task

• Point: BERT provides very good initialization 
for SGD
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What about ChatGPT???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling 

• Then fine-tuned with a method called RLHF (reinforcement learning from 
human feedback)

• We’ll return to this when we talk about reinforcement learning!
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Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections—all “communication” between words in 

sequence is handled by attention

• Have multiple attention “heads” to learn different types of relationships 
between words
• Each head has its own parameters, which enable them to learn different things

• Plus lots of additional components to make it fit together

• Most famous modern language models (e.g., ChatGPT) are Transformers!

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data
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