Transformers,
Pretraining
Robin Jia

USC CSCI 467, Fall 2023
October 19, 2023

Review: Transformer at a high level

o i ° |84 TnelTxdmatr * One transformer consists of
I « Initial embeddings for each
Feedforward word of size d
» Let T =#words, so initially we
Multi-head Attention have a T x d matrix
Feedforward New! \Alternating layers of
Multi-head Attention « “Multi-headed” attention layer

» Feedforward layer

U, U, ug |uj Initial T x d matrix Carriliar Both take in T x d matrix and
amitiar sutput a new T x d matrix
| Embedding « Plus some bells and whistles...

John kicked the ball #words=T=4

Review: Multi-headed Attention

Values

—/ \

V3

oF Vi V)

1 2 1.5
k; k; ks
d- d, ds3
X4 X9 X3

Vg

Dot products for X

Keys T x d matrix

Queries T x d matrix

Input: T vectors x;, ..., x; each of dimension d

At each head, apply 3 separate linear layers to
each x

 Query vectors g, = WQ * x,
« Keys vectors k, = WK * x,
« Value vectors v, = WY * x,

- Each linear layer has its own parameters maps from
dimension d to dimension d,

To compute output o,
Dot product g, with each key vector k;
« Apply softmax to get probabilities

- Computeo, =Y1_, v * v;

« Have n heads with n different sets of

parameters, then concatenate results
+ Choose d,,;, = d/n so output is also dimension d

Parameters W<, WX, WY for each head must be
learned by gradient descent

Multi-headed attention is the most important

idea of Transformers
3

What do attention heads learn?

She

He

Gender-specific term

[Layer: 5 +

The
girl
and
the
boy
walked
home

She

Layer: 5 &

The

girl
and
the
boy
walked
home

He

The Later
girl
and Alice
the came
boy up
walked to
home Bob
She She
Layer: 5§ %
The Late
girl ;
and Alice
the came
boy up
walked to
home Bob

He

Layer: 5 %

Name

Later
Alice
to
Bob

She

Later

Alice

came

Bob

 This attention head seems to
go from a pronoun to its
antecedent (who the pronoun
refers t0)

* Other heads may do more
boring things, like point to the
previous/next word

* In this way, can do RNN-like
things as needed

e But attention also can reach
across long ranges

Runtime comparison

fO—Pf.I—b f2—>f3—>f4 .RNNS

) 4 4)

John kicked the ball * Linear in sequence length
 But all operations have to happen in
€ € €3 ey series
Feedforward * Transformers
Multi-head Attention » Quadratic in sequence length (T x T
matrices)
Feedforward » But can be parallelized (big matrix
Multi-head Attention multiplication)
U, us ug |uy

John kicked the ball

Today’s Plan

 Transformers in full detail
e Transformer decoders
* Pre-training

The Full Transformer

e, e, e |e FinalTxdmatrix Full Transformer also
includes:
I — * Positional
Feedforward embeddings
\\ Add residual : 9 :
] Multi-head Attention |~ connections + * Byte pair enCOdmg
/
Scale dot T d// LayerNorm . Scaleql dot product
products SSONEIRAED __— attention
™~ Multi-head Attention e Qesidua!
connections
u, u, Us u, Initial T x d matrix hetween |ayers

BPE tokenization 1 add token embedding + positional embedding * LayerNorm
John kicked the ball #words=T=4

Transformer internals

e e e e, Final T x d matrix]
1 i > i * One transformer consists of
I » Initial embeddings for each

Feedforward word of size d
: : « Let T =#words, so initially we

Multi-head Attention have a T x d matrix
Feedforward * Alternating layers of
: : * “Multi-headed” attention layer

Multi-head Attention

« Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding « Plus some bells and whistles...

John kicked the ball #words=T=4

Embedding layer

* As before, learn a vector for each word
in vocabulary

* |s this enough?

« Both attention and feedforward layers are
order invariant

* Need the initial embeddings to also encode
order of words!

« Otherwise, every occurrence of the same word
would be treated the same

 Solution: Positional embeddings
» Learn a different vector for each index
* Gets added to word vector at that index

* Note: This means a Transformer model has
some maximum sequence length it knows
how to process

P4

WJohn

John

P2

Wiickied

kicked

I

Wthe

Ps3

the

P4

+
V{ba

ball

positional
embeddings

sum

word vectors

Byte Pair Encoding

* Normal word vectors have
a problem: How to deal with
super rare words?

 Names? Typos?

« Vocabulary can't contain
literally every possible word...

e Solution: Tokenize String Ar’ ’ag’,.’orn’, “told’, “Fro/ 'do’, 12 subword
into “subword tokens” “to’ “mind’, "L’ 'oth’ 'lor’ 'ien’ tokens
« Common words = 1 token
« Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

10

The Full Transformer

e, e, e, % Final T x d matrix Full Transformer also
includes:
I - - Positional
Feedforward \\ embeddings
— Add residual . di
- Multi-head Attention | — connections + * Byte pair encoding
"
Scale dot = LayerNorm . Scaleql dot product
products Feedforward/// attention
~~ Multi-head Attention ° Qesidua!
connections
U, u, U u, Initial T x d matrix hetween Iayers
BPE tokenization | add token embedding + positional embedding * LayerNorm

John kicked the ball #words=T=4

11

Scaled dot product attention

« Earlier | said, “Dot product g,
0= 19|Vl + .5 Vol + .3|vg+ 01|V, with [k, ..., kq]”

 Actually, you take dot product

19 D 3 .01 ' lities for x, and then divide by \/d

K, K, ki |kj KeysT xd matrix « If d large, dot product between
= random vectors will be large

, _ » This makes probabilities close
op d, d3 d4 Queries T x d matrix to 0/1

« Scaling dot products down
encourages more even attention
at beginning

12

Scaled dot product attention

04 = [¥2 chance to influence
100 200 150 -100
ki kg kq |k,
d; op ds d4

This is bad at beginning—
should give all positions a

« Earlier | said, “Dot product g,
with [k, ..., kq]”

 Actually, you take dot product

Probabilities for x, and then divide by JVAdgtin
Dot products forx, Why?

« If d large, dot product between
random vectors will be large

, _ » This makes probabilities close
Queries T x d matrix to 0/

Keys T x d matrix

« Scaling dot products down
encourages more even attention
at beginning

13

The Full Transformer

e, e, e, §| Final T x d matrix

.

N
Feedforward
\\ Add residual
Multi-head Attention [connections +
—— LayerNorm

Scale dot Feedforward _—

products 1
-

N Multi-head Attention

U, u, U u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

Full Transformer also
includes:

Positional
embeddings

Byte pair encoding
Scaled dot product
attention

Residual
connections
Detween layers

« LayerNorm

14

Residual Connections

* Feedforward and multi-headed
attention layers
« Takein T x d matrix X
e Output T x d matrix O

« We add a “residual” connection:
we actually use X + O as output

» Makes it easy to copy information
from input to output

« Think of O as how much we
change the previous value

« Same idea also common in
CNNs!

* Reduces vanishing gradient issues

Output w/ residual

1

g

O2+[Xy |03+1X3 |04+|X4 Ty d matrix
0, O3 0, Output T x d matrix
1 1 1 Linear
Hi n states
h, hi | |n, ‘liddenstates
(T X d}4gen Matrix)

Linear + RelLU

Input T x d matrix

15

Layer Normalization (“LayerNorm”)

LayerNorm is just another type of layer/building block that “normalizes” a vector
Input x: vector of size d

Output y: vector oall‘ size d x = [100, 200, 100, 0]
Formula:

= L E M f com ts of
= — X;
v d o ean oT components oT X

M =100

d
1
o y Z:(a:2 — 1)? Variance of components of x 02 =% * (02 + 1002 + 02 + 1002) = 5000
i—1

T — [1. Normalize: Subtract by mean, Normalized x =
y=a- Jo? T e + 0 divide by standard deviation [0, 100, 0,-100] / ¥/5000

2. Rescale: Multiply by a, add b - [0,1.4,0,-1.4] (If e~ 0)

Parameters

« a & b are scalar parameters, let model learn good scale/shift
« Without these, all vectors forced to have mean=0, variance=1 OUtpUt = [b; 1-4a+b; b; -1 -4a+b]

 £is hyperparameter: Some small humber to prevent division by 0

16

LayerNorm in Transformers

* After every feedforward & multi-headed attention layer, we also add
Layer Normalization
* Input: vectors Xy, ..., Xt
« Compute p and o?for each vector
* Normalize each vector
« Use the same a and b to rescale each vector

* |s applied after residual connection
 Qutput of each layer is LayerNorm(z + Layer(x))

« Why? Stabilizes optimization by avoiding very large values

The Full Transformer

e, CH €3 §| Final T x d matrix

.

N
Feedforward
\\ Add residual
Multi-head Attention [connections +
—— LayerNorm

Scale dot Feedforward _—

products _—
-

N Multi-head Attention

U, U, Us u, Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
John kicked the ball #words=T=4

Full Transformer also
includes:

Positional
embeddings

Byte pair encoding
Scaled dot product
attention

Residual
connections
petween layers

» LayerNorm

18

Announcements

* Project midterm report due October 31
« HW3 to be released early next week

« Tomorrow's section: RNNs in pytorch

« How does an RNN decoder work?
« What do the gradients look like?

19

Review: RNN Decoder Language Models

To be or [END] Training outputs

T T T T

hy —— hy —— |y —— g —— ——

T T T T

[BEGIN] To be question Training inputs

At each step, predict the next word given current hidden state

» Test time: Model chooses a next word, that gets fed back in

 Training time: Model is fed the human-written words, tries to guess next
word at every step

 RNN computations must happen in series at both training and test time

« Each hidden state depends on the previous hidden state
20

Transformer autoregressive decoders

John kicked the ball * How to do autoregressive language modeling?

1 1 1 1 * Test-time

e e, ey e, - Attime t, attend to positions 1 through t
 Happens in series

Feedforward
Multi-head Attention 0 [BEGIN]
" - .“C) John
Feedforwar
§ kicked
Multi-head Attention the
U, U, U3 Uy [BEGIN] John kicked the

[BEGIN] John kicked the Keys

21

Transformer autoregressive decoders

» How to do autoregressive language BEGIN] | 10 | -2 6 3
modeling? S | 0 | 7| 2| 4
. E’(aLning time: Masked attention § kicked| 3 | 4 | 5 | -8
gle
| the | 2 1 7 6
« Recall: Attention computes Q x KT (T x
T matrix), then does softmax [BEGIN] John kicked the
 But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

22

Transformer autoregressive decoders

» How to do autoregressive language BEGIN] | 10 | -2 6 3
modeling? S ol 0o T 7 2 [2
 Training time: Masked attention icked | 3 4 5 3
trick O
| the | 2 1 7 6
« Recall: Attention computes Q x KT (T x
T matrix), then does softmax [BEGIN] John kicked the
 But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

23

Transformer autoregressive decoders

» How to do autoregressive language BEGIN] | 10 | =00 | =00 | -0
mOdelmg? .g John 0 7 -00 | —00
. E’(aLning time: Masked attention § vicked | 3 | 4 5 | —oo
gle
| the | 2 1 7 6
« Recall: Attention computes Q x KT (T x
T matrix), then does softmax [BEGIN] John kicked the
- But if generating autoregressively, Keys
time t can only attend to times 1
through t

« Solution: Overwrite Q x KT to be —00
when query index < key index

 All timesteps happen in parallel

24

Today’s Plan

* Pre-training

25

Neural Networks and Scale

» Neural networks are very expressive,
but have tons of parameters

 Very easy to overfit a small training
dataset

* Traditionally, neural networks were
viewed as flexible but very “sample- °¢
inefficient”: they need many training
examples to be good

« Computationally expensive
 Training at scale often uses GPUs

26

Pretraining

Randomly

* Neural networks learn to extract features -
initialized model

useful for some training task

« The more data you have, the more successful this l Pretrain on lots
will be of data/compute
« If your training task is very general, these Pretrained
features may also be useful for other tasks! -~
* Hence: Pretraining l Adapt to
« First pre-train your model on one task with a lot of smaller dataset

data
 Then use model’s features for a task with less data
» Upends the conventional wisdom: You can use

neural networks with small datasets now, if they
were pretrained appropriately!

27

ImageNet Features

Red ornaments/

056‘ L | flowers

| Text (years?)
;-l Lens flare?
T

Features learned by AlexNet trained on ImageNet

28

ImageNet Features

* ImageNet dataset: 14M images,
1000-way classification

« Most applications don't have this

> much data
mii:e p— container shi motor scooter ‘ ¢ BUt the same features are Sti"
mite container ship motor scooter leopard f I
black widow lifeboat go-kart jaguar use u
cockroach amphibian moped cheetah . « ” .
B gae— B o T tnopard » Using “frozen” pretrained features
I ‘ « Get a (small) dataset for your task

» Generate features from ImageNet-
trained model on this data

« Train linear classifier (or shallow
neural network) using ImageNet

. s o | features
mushroom cnerry adagascar cat
vertible agaric dalmatian sq | monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire englnej dead-man's-ﬂngers' currant howler monkey

29

Masked Language Modeling (MLM)

ieked Probably a verb « MLM: Randomly mask some words, train
/CKed« Something a person model to predict what's missing
I can do to a ball - Doing this well requires understanding
grammar, world knowledge, etc.
e; e, €3 e, Get training data just by grabbing any text
and randomly delete words
Feedforward « Thus: Crawl internet for text data
: , » Transformers are good fit due to
Multi-head Attention scalability
« Large matrix multiplications are highly
Feedforward optimized on GPUs/TPUs
Multi-head Attention . ggr?gsn(?i?(g II;JIEISN%]; operations happening in

* Most famous example: BERT
u, u, Us Uy

John [MASK] the ball

30

Fine-tuning

Make
prediction » |nitialize parameters with BERT
1 « BERT was trained to expect every input to start
e, e, el e, with a special token called [CLS]

« Add parameters that take in the output at
the [CLS] position and make prediction

Feedforward

Multi-head Attention

 Keep training all parameters (“fine-tune”) on

Feedforward the new task
Multi-head Attention « Point: BERT provides very good initialization
. J a1 for SGD
1 2 3 4

[CLS] Los Angeles is..

31

What about ChatGPT???

» ChatGPT appears to be a fine-tuned language model
 Pretrained on autoregressive language modeling

 Then fine-tuned with a method called RLHF (reinforcement learning from
human feedback)

« We'll return to this when we talk about reinforcement learning!

Conclusion: Transformers

 “Attention is all you need”

e Get rid of recurrent connections—all “communication” between words in
sequence is handled by attention

« Have multiple attention “heads” to learn different types of relationships
between words

« Each head has its own parameters, which enable them to learn different things
 Plus lots of additional components to make it fit together
« Most famous modern language models (e.g., ChatGPT) are Transformers!

* Pretraining
* First train on large labeled or unlabeled datasets
« Features learned are useful for other tasks with less data

	Default Section
	Slide 1: Transformers, Pretraining
	Slide 2: Review: Transformer at a high level
	Slide 3: Review: Multi-headed Attention
	Slide 4: What do attention heads learn?
	Slide 5: Runtime comparison
	Slide 6: Today’s Plan
	Slide 7: The Full Transformer
	Slide 8: Transformer internals
	Slide 9: Embedding layer
	Slide 10: Byte Pair Encoding
	Slide 11: The Full Transformer
	Slide 12: Scaled dot product attention
	Slide 13: Scaled dot product attention
	Slide 14: The Full Transformer
	Slide 15: Residual Connections
	Slide 16: Layer Normalization (“LayerNorm”)
	Slide 17: LayerNorm in Transformers
	Slide 18: The Full Transformer
	Slide 19: Announcements
	Slide 20: Review: RNN Decoder Language Models
	Slide 21: Transformer autoregressive decoders
	Slide 22: Transformer autoregressive decoders
	Slide 23: Transformer autoregressive decoders
	Slide 24: Transformer autoregressive decoders
	Slide 25: Today’s Plan
	Slide 26: Neural Networks and Scale
	Slide 27: Pretraining
	Slide 28: ImageNet Features
	Slide 29: ImageNet Features
	Slide 30: Masked Language Modeling (MLM)
	Slide 31: Fine-tuning
	Slide 32: What about ChatGPT???
	Slide 33: Conclusion: Transformers

