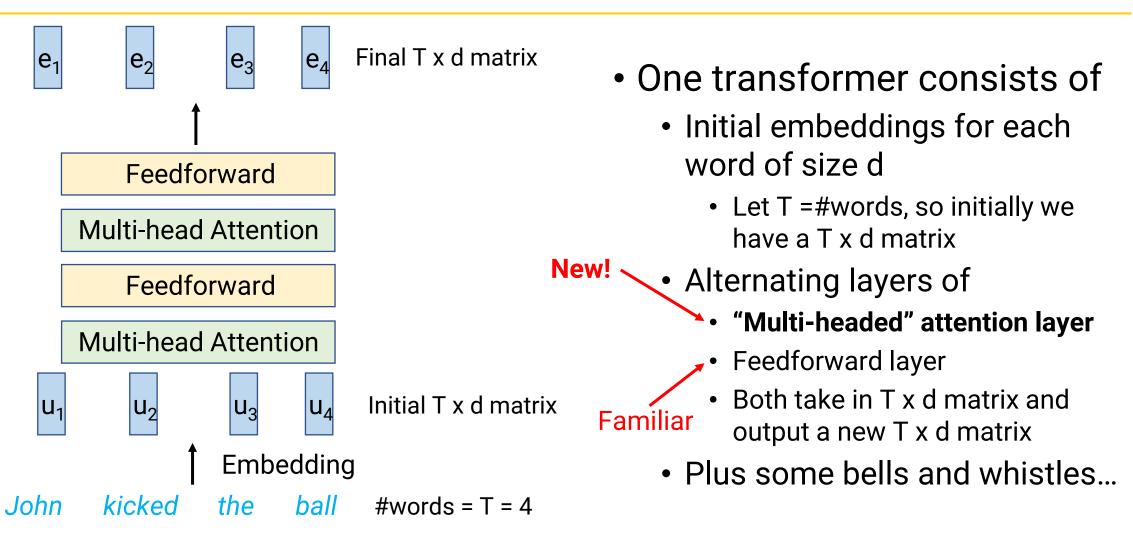
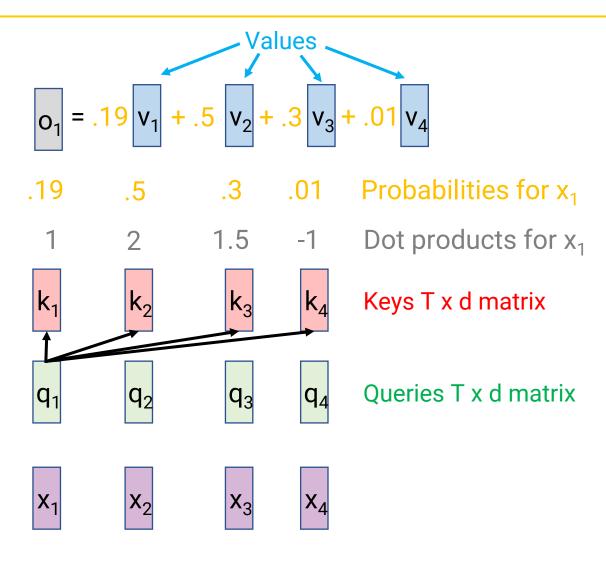
Transformers, Pretraining

Robin Jia USC CSCI 467, Fall 2023 October 19, 2023

Review: Transformer at a high level

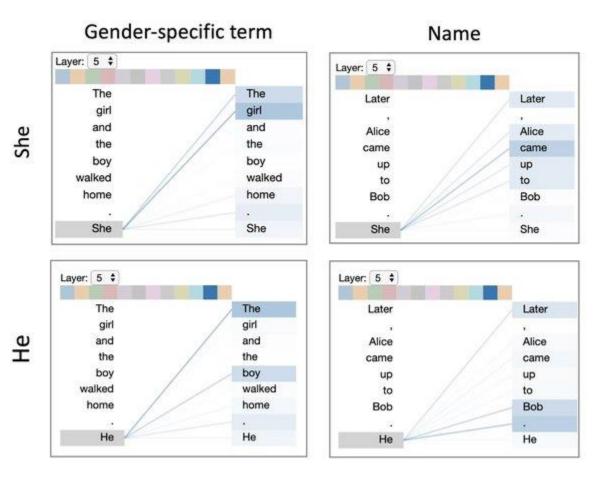


Review: Multi-headed Attention



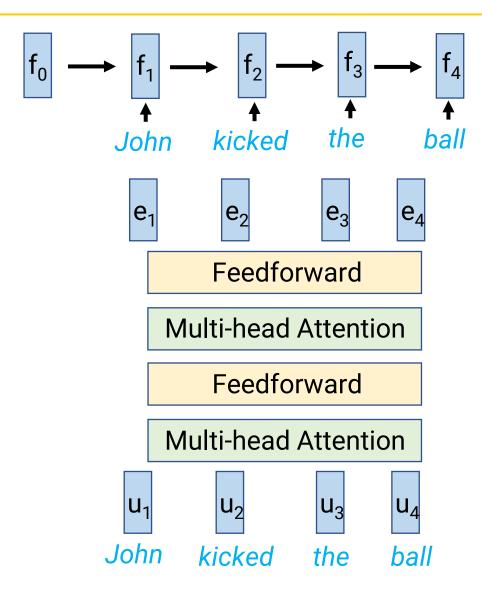
- Input: T vectors \mathbf{x}_1 , ..., \mathbf{x}_T each of dimension d
- At each head, apply 3 separate linear layers to each x_t :
 - Query vectors q_t = W^Q * x_t
 - Keys vectors k_t = W^K * x_t
 - Value vectors $v_t = W^{\vee} * x_t$
 - Each linear layer has its own parameters maps from dimension d to dimension $\rm d_{attn}$
- To compute output o_t:
 - Dot product q_t with each key vector k_i
 - Apply softmax to get probabilities p_i
 - Compute $o_t = \sum_{i=1}^T p_i * v_i$
- Have n heads with n different sets of parameters, then concatenate results
 - Choose $d_{attn} = d/n$ so output is also dimension d
- Parameters W^Q, W^K, W^V for each head must be learned by gradient descent
- Multi-headed attention is the most important idea of Transformers

What do attention heads learn?



- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
 - In this way, can do RNN-like things as needed
 - But attention also can reach across long ranges

Runtime comparison



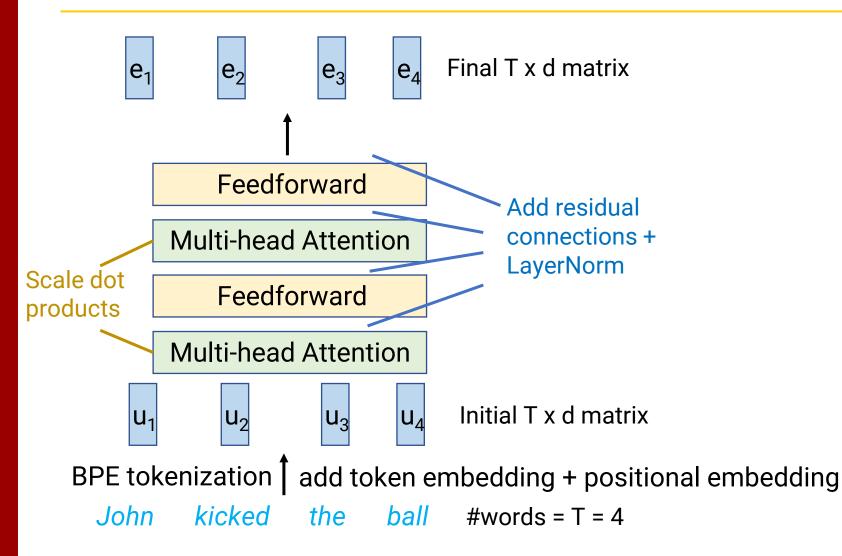
• RNNs

- Linear in sequence length
- But all operations have to happen in series
- Transformers
 - Quadratic in sequence length (T x T matrices)
 - But can be parallelized (big matrix multiplication)

Today's Plan

- Transformers in full detail
- Transformer decoders
- Pre-training

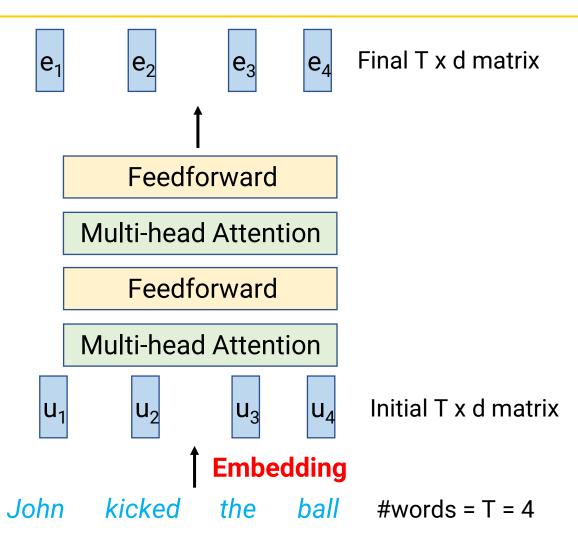
The Full Transformer



Full Transformer also includes:

- Positional embeddings
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

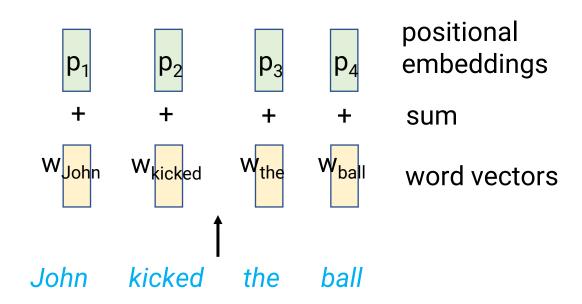
Transformer internals



- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
 - Both attention and feedforward layers are order invariant
 - Need the initial embeddings to also encode order of words!
 - Otherwise, every occurrence of the same word would be treated the same
- Solution: Positional embeddings
 - Learn a different vector for each index
 - Gets added to word vector at that index
 - Note: This means a Transformer model has some maximum sequence length it knows how to process



Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
 - Names? Typos?
 - Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
 - Common words = 1 token
 - Rare words = multiple tokens

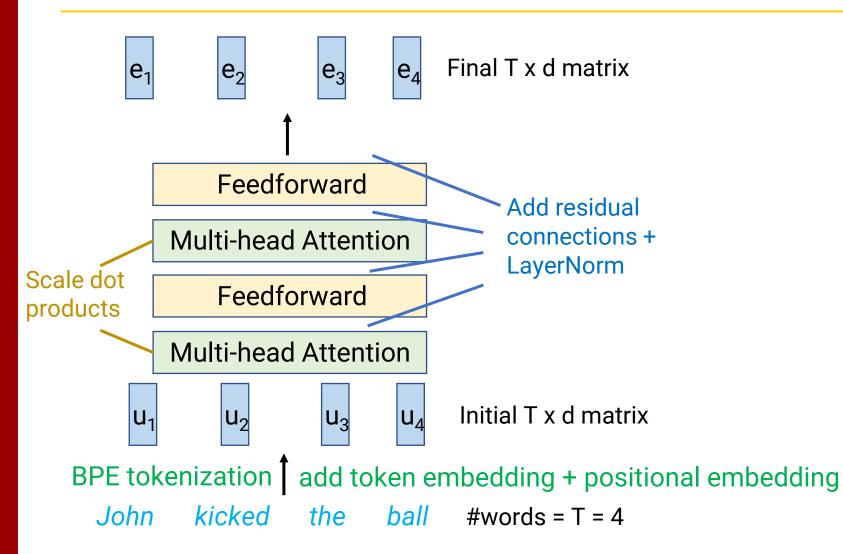
Aragorn told Frodo to mind Lothlorien 6 words 'Ar', 'ag', 'orn', ' told', ' Fro', 'do', 12 subword

' to', ' mind', ' L', 'oth', 'lor', 'ien'

10

tokens

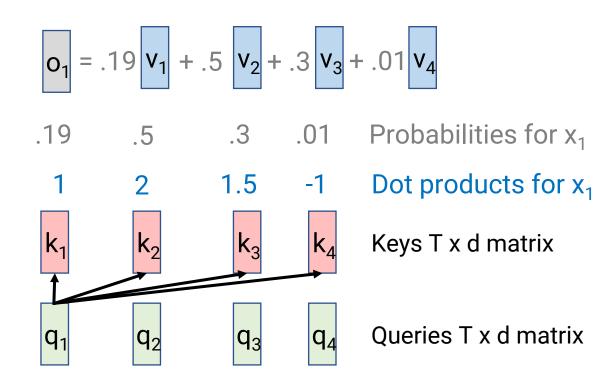
The Full Transformer



Full Transformer also includes:

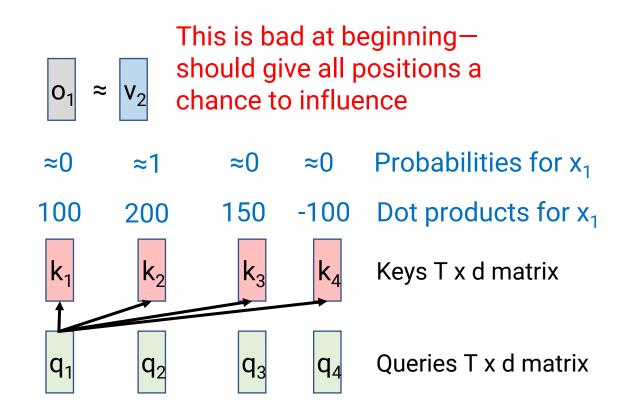
- Positional embeddings
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Scaled dot product attention



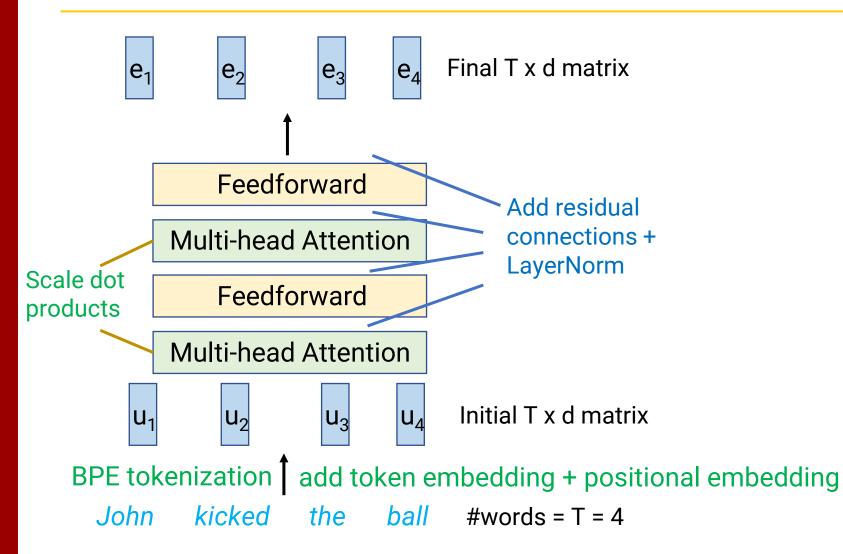
- Earlier I said, "Dot product q_t with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Scaled dot product attention



- Earlier I said, "Dot product q_t with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

The Full Transformer

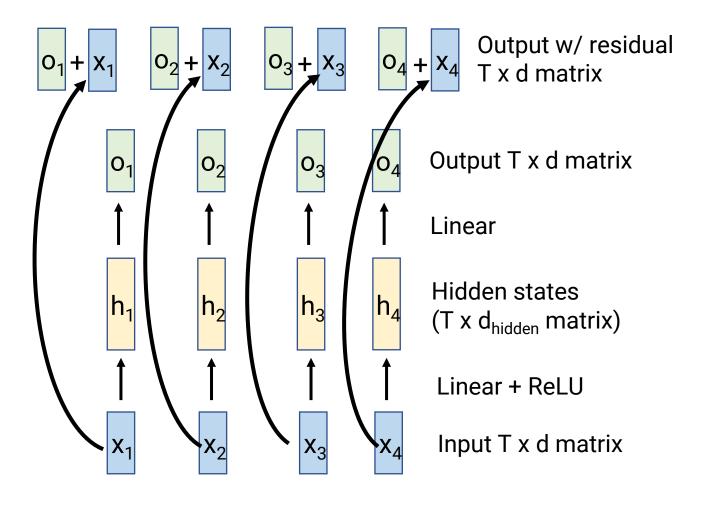


Full Transformer also includes:

- Positional embeddings
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

Residual Connections

- Feedforward and multi-headed attention layers
 - Take in T x d matrix X
 - Output T x d matrix O
- We add a "residual" connection: we actually use X + O as output
 - Makes it easy to copy information from input to output
 - Think of O as how much we change the previous value
- Same idea also common in CNNs!
 - Reduces vanishing gradient issues



Layer Normalization ("LayerNorm")

- LayerNorm is just another type of layer/building block that "normalizes" a vector
- Input x: vector of size d
- Output y: vector of size d Formula: $\mu = \frac{1}{d} \sum_{i=1}^{d} x_i$ Mean of components of x μ = 100

 $\sigma^2 = \frac{1}{d} \sum_{i=1}^{n} (x_i - \mu)^2$ Variance of components of x $\sigma^2 = \frac{1}{4} * (0^2 + 100^2 + 0^2 + 100^2) = 5000$ Normalized x = $y = a \cdot \underbrace{\frac{x - \mu}{\sqrt{\sigma^2 + \varepsilon}}}_{\text{H}} + b$ 2. Rescale: Multiply by a, add b

[0, 100, 0, -100] / \sqrt{5000} = [0, 1.4, 0, -1.4] (If $\varepsilon \approx 0$)

Output = [b, 1.4a+b, b, -1.4a+b]

x = [100, 200, 100, 0]

- Parameters
 - a & b are scalar parameters, let model learn good scale/shift
 - Without these, all vectors forced to have mean=0, variance=1

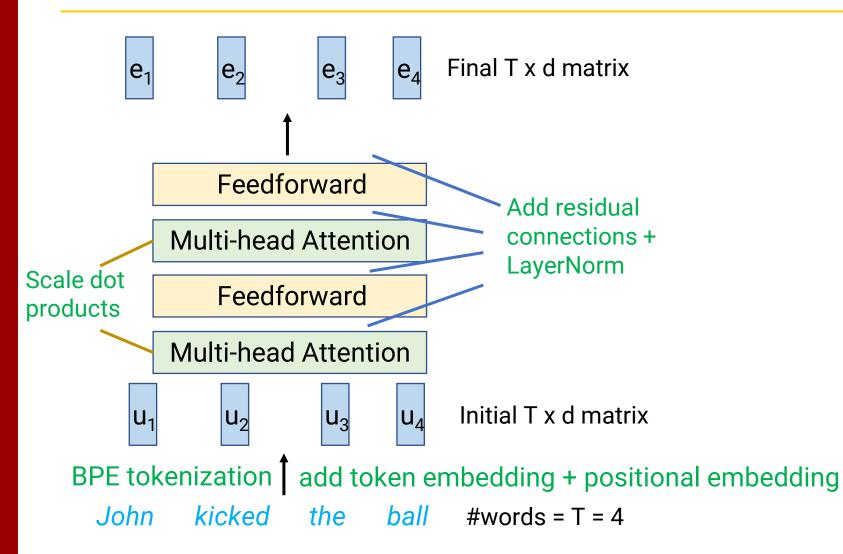
Normalized x

ε is hyperparameter: Some small number to prevent division by 0

LayerNorm in Transformers

- After every feedforward & multi-headed attention layer, we also add Layer Normalization
 - Input: vectors x₁, ..., x_T
 - Compute μ and σ^2 for each vector
 - Normalize each vector
 - Use the same a and b to rescale each vector
- Is applied after residual connection
 - Output of each layer is LayerNorm(x + Layer(x))
- Why? Stabilizes optimization by avoiding very large values

The Full Transformer



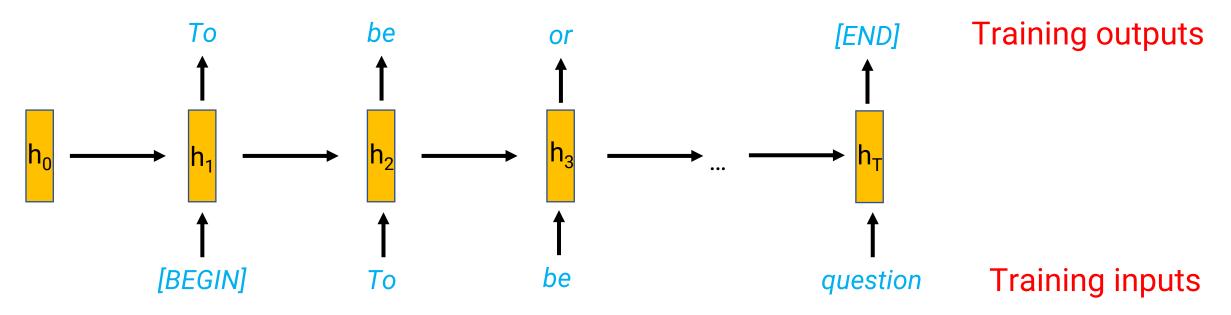
Full Transformer also includes:

- Positional embeddings
- Byte pair encoding
- Scaled dot product attention
- Residual connections between layers
- LayerNorm

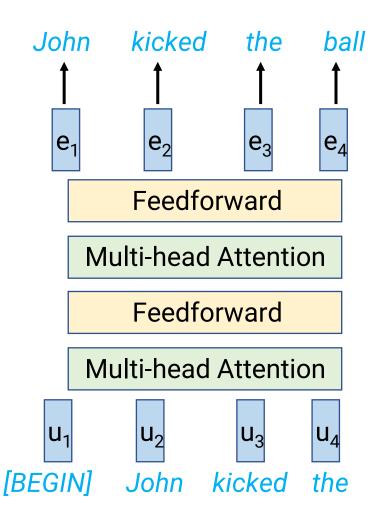
Announcements

- Project midterm report due October 31
- HW3 to be released early next week
- Tomorrow's section: RNNs in pytorch
 - How does an RNN decoder work?
 - What do the gradients look like?

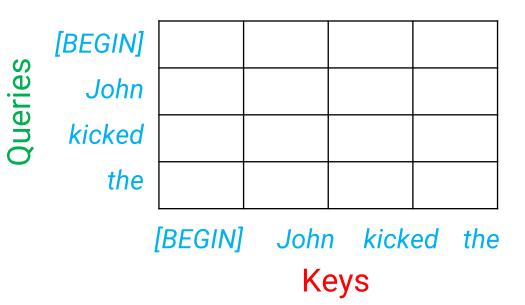
Review: RNN Decoder Language Models



- At each step, predict the next word given current hidden state
- Test time: Model chooses a next word, that gets fed back in
- Training time: Model is fed the human-written words, tries to guess next word at every step
- RNN computations must happen in series at both training and test time
 - Each hidden state depends on the previous hidden state



- How to do autoregressive language modeling?
- Test-time
 - At time t, attend to positions 1 through t
 - Happens in series



- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes Q x K^T (T x T matrix), then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - All timesteps happen in parallel

	l	[BEGIN] John kicked the Keys			
	the	2	1	7	6
Queries	kicked	-3	4	5	-8
	John	0	7	2	-4
(0)	[BEGIN]	10	-2	6	3

- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes Q x K^T (T x T matrix), then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - All timesteps happen in parallel

		Keys				
		[BEGIN]	Johr	n kick	ed the	
Ŭ	the	2	1	7	6	
Queries	kicked	-3	4	5	-8	
	John	0	7	2	-4	
	[BEGIN]	10	-2	6	3	

- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes Q x K^T (T x T matrix), then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - All timesteps happen in parallel

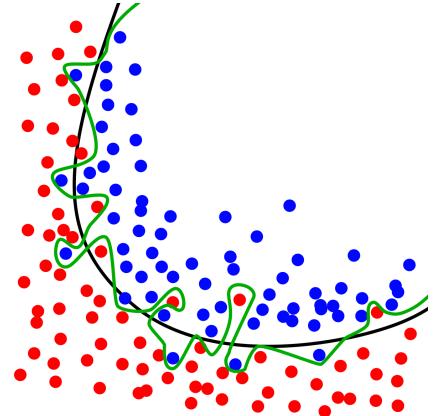
		Keys				
		[BEGIN]	Johr	n kick	ed the	
	the	2	1	7	6	
Jueries	kicked	-3	4	5	-∞	
	John	0	7	-∞	-∞	
	[BEGIN]	10	-∞	-∞	-∞	

Today's Plan

- Transformers in full detail
- Transformer decoders
- Pre-training

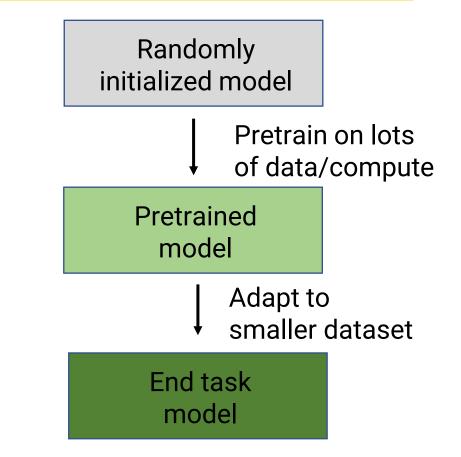
Neural Networks and Scale

- Neural networks are very expressive, but have tons of parameters
 - Very easy to overfit a small training dataset
- Traditionally, neural networks were viewed as flexible but very "sampleinefficient": they need many training examples to be good
 - Computationally expensive
 - Training at scale often uses GPUs



Pretraining

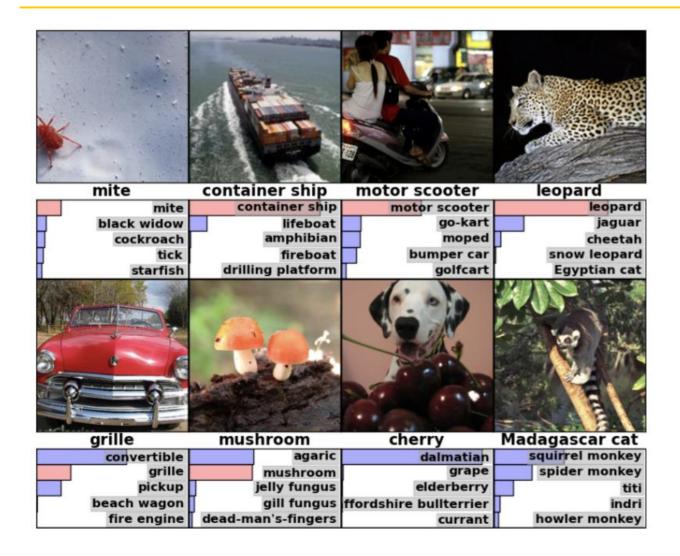
- Neural networks learn to extract features useful for some training task
 - The more data you have, the more successful this will be
- If your training task is very general, these features may also be useful for other tasks!
- Hence: Pretraining
 - First pre-train your model on one task with a lot of data
 - Then use model's features for a task with less data
 - Upends the conventional wisdom: You can use neural networks with small datasets now, if they were pretrained appropriately!



ImageNet Features

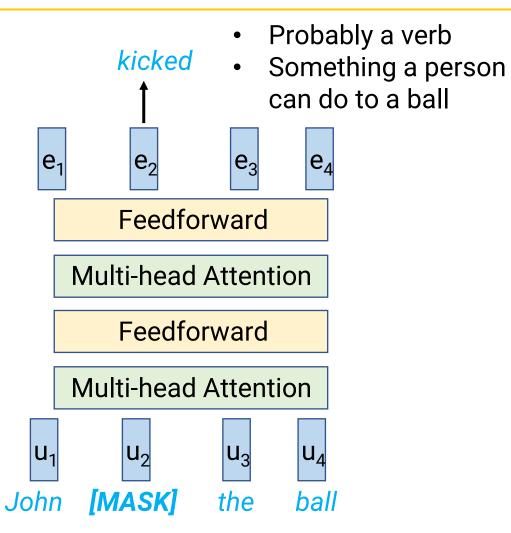
Features learned by AlexNet trained on ImageNet

ImageNet Features



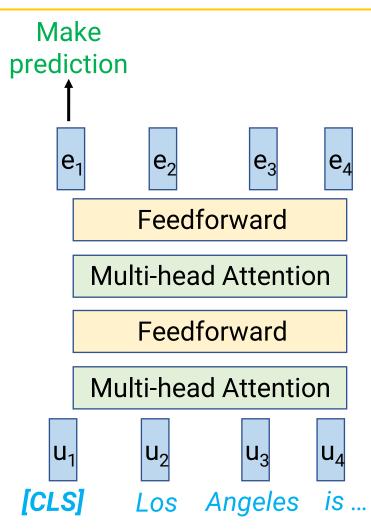
- ImageNet dataset: 14M images, 1000-way classification
- Most applications don't have this much data
- But the same features are still useful
- Using "frozen" pretrained features
 - Get a (small) dataset for your task
 - Generate features from ImageNettrained model on this data
 - Train linear classifier (or shallow neural network) using ImageNet features

Masked Language Modeling (MLM)



- MLM: Randomly mask some words, train model to predict what's missing
 - Doing this well requires understanding grammar, world knowledge, etc.
 - Get training data just by grabbing any text and randomly delete words
 - Thus: Crawl internet for text data
- Transformers are good fit due to scalability
 - Large matrix multiplications are highly optimized on GPUs/TPUs
 - Don't need lots of operations happening in series (like RNNs)
- Most famous example: BERT

Fine-tuning



- Initialize parameters with BERT
 - BERT was trained to expect every input to start with a special token called [CLS]
- Add parameters that take in the output at the [CLS] position and make prediction
- Keep training all parameters ("fine-tune") on the new task
- Point: BERT provides very good initialization for SGD

What about ChatGPT???

- ChatGPT appears to be a fine-tuned language model
 - Pretrained on autoregressive language modeling
 - Then fine-tuned with a method called RLHF (reinforcement learning from human feedback)
 - We'll return to this when we talk about reinforcement learning!

Conclusion: Transformers

- "Attention is all you need"
 - Get rid of recurrent connections—all "communication" between words in sequence is handled by attention
 - Have multiple attention "heads" to learn different types of relationships between words
 - Each head has its own parameters, which enable them to learn different things
 - Plus lots of additional components to make it fit together
 - Most famous modern language models (e.g., ChatGPT) are Transformers!
- Pretraining
 - First train on large labeled or unlabeled datasets
 - Features learned are useful for other tasks with less data