
Transformers,
Pretraining

Robin Jia
USC CSCI 467, Fall 2023

October 19, 2023

Review: Transformer at a high level

• One transformer consists of
• Initial embeddings for each

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

2

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

New!

Familiar

+ .5 + .3 + .01= .19

Review: Multi-headed Attention
• Input: T vectors x1, …, xT each of dimension d

• At each head, apply 3 separate linear layers to
each xt:

• Query vectors qt = WQ * xt

• Keys vectors kt = WK * xt

• Value vectors vt = WV * xt

• Each linear layer has its own parameters maps from
dimension d to dimension dattn

• To compute output ot:
• Dot product qt with each key vector ki

• Apply softmax to get probabilities pi

• Compute 𝑜𝑡 = σ𝑖=1
𝑇 𝑝𝑖 ∗ 𝑣𝑖

• Have n heads with n different sets of
parameters, then concatenate results

• Choose dattn = d/n so output is also dimension d

• Parameters WQ, WK, WV for each head must be
learned by gradient descent

• Multi-headed attention is the most important
idea of Transformers

3

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

x1 x2 x3 x4

What do attention heads learn?

• This attention head seems to
go from a pronoun to its
antecedent (who the pronoun
refers to)

• Other heads may do more
boring things, like point to the
previous/next word
• In this way, can do RNN-like

things as needed

• But attention also can reach
across long ranges

4

Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in
series

• Transformers
• Quadratic in sequence length (T x T

matrices)

• But can be parallelized (big matrix
multiplication)

5

John kicked the

f1 f2
f3f0

kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John

ball

f4

Today’s Plan

• Transformers in full detail

• Transformer decoders

• Pre-training

6

The Full Transformer

Full Transformer also
includes:

• Positional
embeddings

• Byte pair encoding

• Scaled dot product
attention

• Residual
connections
between layers

• LayerNorm

7

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Transformer internals

• One transformer consists of
• Initial embeddings for each

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

8

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Embedding layer

• As before, learn a vector for each word
in vocabulary

• Is this enough?
• Both attention and feedforward layers are

order invariant
• Need the initial embeddings to also encode

order of words!
• Otherwise, every occurrence of the same word

would be treated the same

• Solution: Positional embeddings
• Learn a different vector for each index
• Gets added to word vector at that index
• Note: This means a Transformer model has

some maximum sequence length it knows
how to process

9

John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4

+ + + +

word vectors

positional
embeddings

sum

Byte Pair Encoding

• Normal word vectors have
a problem: How to deal with
super rare words?
• Names? Typos?

• Vocabulary can’t contain
literally every possible word…

• Solution: Tokenize string
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens

10

Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’,
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword
tokens

The Full Transformer

Full Transformer also
includes:

• Positional
embeddings

• Byte pair encoding

• Scaled dot product
attention

• Residual
connections
between layers

• LayerNorm

11

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product qt
with [k1, …, kT]”

• Actually, you take dot product
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large

• This makes probabilities close
to 0/1

• Scaling dot products down
encourages more even attention
at beginning

12

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

≈

Scaled dot product attention

• Earlier I said, “Dot product qt
with [k1, …, kT]”

• Actually, you take dot product
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large

• This makes probabilities close
to 0/1

• Scaling dot products down
encourages more even attention
at beginning

13

k1 k2 k3 k4 Keys T x d matrix

100 200 150 -100

≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a
chance to influence

The Full Transformer

Full Transformer also
includes:

• Positional
embeddings

• Byte pair encoding

• Scaled dot product
attention

• Residual
connections
between layers

• LayerNorm

14

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Residual Connections

• Feedforward and multi-headed
attention layers
• Take in T x d matrix X

• Output T x d matrix O

• We add a “residual” connection:
we actually use X + O as output
• Makes it easy to copy information

from input to output

• Think of O as how much we
change the previous value

• Same idea also common in
CNNs!
• Reduces vanishing gradient issues

15

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Output w/ residual
T x d matrix

o1 o2 o3 o4x1 x2 x3 x4+ + + +

Layer Normalization (“LayerNorm”)

• LayerNorm is just another type of layer/building block that “normalizes” a vector

• Input x: vector of size d

• Output y: vector of size d

• Formula:

• Parameters
• a & b are scalar parameters, let model learn good scale/shift

• Without these, all vectors forced to have mean=0, variance=1

• ɛ is hyperparameter: Some small number to prevent division by 0

16

Mean of components of x

Variance of components of x

1. Normalize: Subtract by mean,
divide by standard deviation

2. Rescale: Multiply by a, add b

x = [100, 200, 100, 0]

μ = 100

σ2 = ¼ * (02 + 1002 + 02 + 1002) = 5000

Normalized x =

[0, 100, 0, -100] / 5000

= [0, 1.4, 0, -1.4] (If ɛ ≈ 0)

Output = [b, 1.4a+b, b, -1.4a+b]

Normalized x

LayerNorm in Transformers

• After every feedforward & multi-headed attention layer, we also add
Layer Normalization
• Input: vectors x1, …, xT

• Compute μ and σ2 for each vector

• Normalize each vector

• Use the same a and b to rescale each vector

• Is applied after residual connection
• Output of each layer is

• Why? Stabilizes optimization by avoiding very large values

17

The Full Transformer

Full Transformer also
includes:

• Positional
embeddings

• Byte pair encoding

• Scaled dot product
attention

• Residual
connections
between layers

• LayerNorm

18

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Scale dot
products

Announcements

• Project midterm report due October 31

• HW3 to be released early next week

• Tomorrow’s section: RNNs in pytorch
• How does an RNN decoder work?

• What do the gradients look like?

19

Review: RNN Decoder Language Models

• At each step, predict the next word given current hidden state
• Test time: Model chooses a next word, that gets fed back in
• Training time: Model is fed the human-written words, tries to guess next

word at every step
• RNN computations must happen in series at both training and test time

• Each hidden state depends on the previous hidden state
20

…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]

Training inputs

Training outputs

Transformer autoregressive decoders

• How to do autoregressive language modeling?

• Test-time
• At time t, attend to positions 1 through t

• Happens in series

21

[BEGIN] John kicked the

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John kicked the ball

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10

0 7

-3 4 5

2 1 7 6
Q

u
e

ri
e

s

Keys

Transformer autoregressive decoders

• How to do autoregressive language
modeling?

• Training time: Masked attention
trick
• Recall: Attention computes Q x KT (T x

T matrix), then does softmax

• But if generating autoregressively,
time t can only attend to times 1
through t

• Solution: Overwrite Q x KT to be –∞
when query index < key index

• All timesteps happen in parallel

22

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10 -2 6 3

0 7 2 -4

-3 4 5 -8

2 1 7 6

Q
u

e
ri

e
s

Keys

Transformer autoregressive decoders

• How to do autoregressive language
modeling?

• Training time: Masked attention
trick
• Recall: Attention computes Q x KT (T x

T matrix), then does softmax

• But if generating autoregressively,
time t can only attend to times 1
through t

• Solution: Overwrite Q x KT to be –∞
when query index < key index

• All timesteps happen in parallel

23

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10 -2 6 3

0 7 2 -4

-3 4 5 -8

2 1 7 6

Keys

Q
u

e
ri

e
s

Transformer autoregressive decoders

• How to do autoregressive language
modeling?

• Training time: Masked attention
trick
• Recall: Attention computes Q x KT (T x

T matrix), then does softmax

• But if generating autoregressively,
time t can only attend to times 1
through t

• Solution: Overwrite Q x KT to be –∞
when query index < key index

• All timesteps happen in parallel

24

[BEGIN] John kicked the

[BEGIN]

John

kicked

the

10 –∞ –∞ –∞

0 7 –∞ –∞

-3 4 5 –∞

2 1 7 6

Keys

Q
u

e
ri

e
s

Today’s Plan

• Transformers in full detail

• Transformer decoders

• Pre-training

25

Neural Networks and Scale

• Neural networks are very expressive,
but have tons of parameters
• Very easy to overfit a small training

dataset

• Traditionally, neural networks were
viewed as flexible but very “sample-
inefficient”: they need many training
examples to be good
• Computationally expensive

• Training at scale often uses GPUs

26

Pretraining

• Neural networks learn to extract features
useful for some training task
• The more data you have, the more successful this

will be

• If your training task is very general, these
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use
neural networks with small datasets now, if they
were pretrained appropriately!

27

Randomly
initialized model

Pretrain on lots
of data/compute

Pretrained
model

Adapt to
smaller dataset

End task
model

ImageNet Features

Features learned by AlexNet trained on ImageNet

28

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?

ImageNet Features

29

• ImageNet dataset: 14M images,
1000-way classification

• Most applications don’t have this
much data

• But the same features are still
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow

neural network) using ImageNet
features

Masked Language Modeling (MLM)
• MLM: Randomly mask some words, train

model to predict what’s missing
• Doing this well requires understanding

grammar, world knowledge, etc.
• Get training data just by grabbing any text

and randomly delete words
• Thus: Crawl internet for text data

• Transformers are good fit due to
scalability
• Large matrix multiplications are highly

optimized on GPUs/TPUs
• Don’t need lots of operations happening in

series (like RNNs)

• Most famous example: BERT

30

John [MASK] the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

kicked
• Probably a verb
• Something a person

can do to a ball

Fine-tuning

• Initialize parameters with BERT
• BERT was trained to expect every input to start

with a special token called [CLS]

• Add parameters that take in the output at
the [CLS] position and make prediction

• Keep training all parameters (“fine-tune”) on
the new task

• Point: BERT provides very good initialization
for SGD

31

[CLS] Angeles is …

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Los

Make
prediction

What about ChatGPT???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling

• Then fine-tuned with a method called RLHF (reinforcement learning from
human feedback)

• We’ll return to this when we talk about reinforcement learning!

32

Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections—all “communication” between words in

sequence is handled by attention

• Have multiple attention “heads” to learn different types of relationships
between words
• Each head has its own parameters, which enable them to learn different things

• Plus lots of additional components to make it fit together

• Most famous modern language models (e.g., ChatGPT) are Transformers!

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data

33

	Default Section
	Slide 1: Transformers, Pretraining
	Slide 2: Review: Transformer at a high level
	Slide 3: Review: Multi-headed Attention
	Slide 4: What do attention heads learn?
	Slide 5: Runtime comparison
	Slide 6: Today’s Plan
	Slide 7: The Full Transformer
	Slide 8: Transformer internals
	Slide 9: Embedding layer
	Slide 10: Byte Pair Encoding
	Slide 11: The Full Transformer
	Slide 12: Scaled dot product attention
	Slide 13: Scaled dot product attention
	Slide 14: The Full Transformer
	Slide 15: Residual Connections
	Slide 16: Layer Normalization (“LayerNorm”)
	Slide 17: LayerNorm in Transformers
	Slide 18: The Full Transformer
	Slide 19: Announcements
	Slide 20: Review: RNN Decoder Language Models
	Slide 21: Transformer autoregressive decoders
	Slide 22: Transformer autoregressive decoders
	Slide 23: Transformer autoregressive decoders
	Slide 24: Transformer autoregressive decoders
	Slide 25: Today’s Plan
	Slide 26: Neural Networks and Scale
	Slide 27: Pretraining
	Slide 28: ImageNet Features
	Slide 29: ImageNet Features
	Slide 30: Masked Language Modeling (MLM)
	Slide 31: Fine-tuning
	Slide 32: What about ChatGPT???
	Slide 33: Conclusion: Transformers

