
Deep Learning Review,
Transformers

Robin Jia
USC CSCI 467, Fall 2023

October 17, 2023



Parameters & Hyperparameters

Parameters

• Numbers that directly determine 
the model’s predictions

• Must be learned 
• Usually by choosing parameter 

values that minimize some loss 
function

• Example: w & b for logistic 
regression, which makes 
prediction

P(y=1 | x) = σ(wTx + b)

Hyperparameters

• Numbers that influence which 
parameters are learned
• Thus, they indirectly influence 

model’s predictions

• Cannot be learned—must be 
chosen before learning starts
• Hyperparameter tuning: Can try 

learning many times with different 
hyperparameters, then pick the one 
with best development accuracy

• Example: λ for L2 regularization
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Deep Learning Review

• Neural Network = Many 
“layers” stacked on top of 
each other
• Layers built from a core set of 

building blocks

• Arrangement of layers is 
called an “architecture”

• Each layer takes in some 
input and computes some 
output
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The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()
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Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute 
y = Wx + b

Params: W, b



The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of 
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(), 
nn.functional.relu(), etc.
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Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute 
yi = σ(xi)

for each i



The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of 
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(), 
nn.functional.relu(), etc.
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Input x, any shape

Output y, same shape as x

ReLU Layer
Compute 

yi = max(xi, 0)
for each i



The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.
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Input ypred, 
scalar

Output z, 
scalar

MSELoss Layer
Compute 

z = (ypred – ytrue)2

Input ytrue, 
scalar



Building Linear Regression

• Step 1: Compute the loss on 
one example
• Training example is (x, y)

• x is vector of length d, y is scalar
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Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute 

z = (ypred – ytrue)2

Input x

Input y
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Building Linear Regression

• Step 1: Compute the loss on 
one example
• Training example is (x, y)

• x is vector of length d, y is scalar

• Step 2: Compute gradient of 
loss with respect to all 
parameters

• Step 3: Update all parameters 
with gradient descent update 
rule 
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Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute 

z = (ypred – ytrue)2

Input x

Input y
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Building an MLP (for regression)

• Steps for training are exactly the 
same:

• Step 1: Compute the loss on one 
example
• Training example is (x, y)
• x is vector of length d, y is scalar

• Step 2: Compute gradient of loss 
with respect to all parameters
• No matter how many/which layers we 

use, backpropagation can 
automatically compute gradient of loss 
with respect to parameters

• Step 3: Update all parameters with 
gradient descent update rule 
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Linear Layer 2
din=dhidden, dout=1
Params: w2, b2

Output: loss

MSELoss Layer
z = (ypred – ytrue)2

Input x

Input y

ReLU Layer

Linear Layer 1
din=d, dout=dhidden

Params: w1, b1N
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CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and 

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()
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Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
Convolve kernel

with input

Params: Kernel



CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension 
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute 
max

• Parameters: None

• In pytorch: nn.MaxPool2d()
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Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch



Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to 

extract features
• Then use MLP to make final 

prediction

• Basic steps are still all the 
same
• Backpropagation still works

• Gradient descent needed to 
update all parameters
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Linear Layer 2
Params: w2, b2

Input x

ReLU Layer

Linear Layer 1
Params: w1, b1
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Convolutional Layer
Params: Kernel

Max Pool Layer

ReLU Layer



RNN “Building Blocks”

(6) RNN Layer

• Input: List of vectors x1, …, xT, each of size din
• E.g., xt is word vector for t-th word in sentence
• Equivalent to a T x din matrix

• Output: List of vectors h1, …, ht, each of size dout
• dout: Dimension of hidden state
• Equivalent to a T x dout matrix

• Formula (Elman RNN):

• Parameters:
• Wh: Matrix of shape (dout, dout)
• Wx: Matrix of shape (dout, din)
• b: Vector of shape (dout,)
• h0: Vector of shape (dout,)

• In pytorch: nn.RNN(), nn.LSTM(), etc.
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Input x1, …, xT, each shape din

RNN Layer
Params: Wh, Wx, b, h0

Output h1, …, hT, each shape dout

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5



RNN “Building Blocks”

(7) Word Vector Layer

• Input w: A word
• Must be in the vocabulary
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors 

corresponding to each word 

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector 

parameter vw of shape d
• Think of this as a dictionary called word_vecs, where 

the keys are words & values are learned parameter 
vectors

• In pytorch: nn.Embedding()
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Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)



Building an RNN encoder model

• A generic RNN architecture
• Map each word to a vector

• Feed word vectors to RNN to 
generate list of hidden states

• Feed final hidden state to MLP to 
make final prediction

• Basic steps are still all the same
• Backpropagation still works

• Gradient descent needed to 
update all parameters
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Input words w1, …, wT

w1 w2 w3 w4 w5

h1 h2 h3 h4 h5

Word Vector Layer
Params: vw for each w in vocab

Linear Layer 2
Params: w2, b2

ReLU Layer

Linear Layer 1
Params: w1, b1

RNN Layer
Params: Wh, Wx, b, h0



Review: Attention (with dot product)
• Input:

• Encoder hidden states for each 
input token

• Current decoder hidden state

• Find relevant input words
• Dot product current decoder hidden 

state with all encoder hidden states
• Normalize dot products to 

probability distribution with 
softmax

• Output: “Context” vector c = 
weighted average of encoder 
states based on the probabilities 
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I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3

+.01c

Dot Product



Attention Layer as a Building Block

(8) Attention Layer

• Inputs: 
• x1, …, xT: List of vectors to attend to, size d
• h: “query” vector to decide what to attend to, size d

• Output c: Convext vector of size d

• Formula:

• Parameters: None

• In pytorch: Implement with sequence of basic 
operations
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Input h of shape (d,)

Output: Vector c of shape (d,)

Attention Layer

Input x1, …, xT, each shape d



Summary: Neural Network Building Blocks

• Neural network components are like lego 
bricks
• Can be assembled in many different ways
• Some have parameters, some don’t

• Training strategy is always the same
• (1) Compute loss
• (2) Take gradient  of loss w.r.t. parameters
• (3) Gradient descent

• Backpropagation works on any architecture

• So, when we discuss neural architectures, 
we only need to discuss the forward pass
• Backpropagation takes care of gradients
• Gradient descent takes care of learning 

parameters
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Announcements

• Midterm grades released

• Project Proposal grades & feedback released

• Midterm report due October 31
• Main goal: Obtain needed data & have a full pipeline that processes data, 

trains a model, and gets some results

• Compare this model with some baseline (either an even simpler model or a 
non-learning method)

• Results may or may not be “good”—just a starting point for final model

• Analyze errors and identify possible sources of improvement
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Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment
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Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies
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He ate steak with ketchup

He ate steak with a fork

Goes with “steak”

Modifies “ate”



Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships
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Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

• Long range dependencies
• E.g., consistency of characters in 

a novel

• Attention captures relationships 
& doesn’t care about “distance”
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Today: The Transformer Architecture

• Input: Sequence of words

• Output: Sequence of vectors, one per 
word

• Same “type signature” as RNN

• Motivation
• Don’t do explicit sequential processing

• Instead, let attention figure out which 
words are relevant to each other
• RNN assumes sequence order is what 

matters

• “Attention is all you need”

25

John kicked the ball

Transformer

e1 e2 e3 e4



Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Feedforward layer

• Input: T x d matrix

• Output: Another T x d matrix

• Apply the same MLP 
separately to each d-
dimensional vector
• Linear layer from d to dhidden

• ReLU (or other nonlinearity)

• Linear layer from dhidden to d

• Note: No information moves 
between tokens here
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x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix



Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Modifying Attention

• What is a multi-headed 
attention layer???

• Similar to attention we’ve 
seen, but need to make 3 
changes…
• Self-attention (no separate 

encoder & decoder)

• Separate queries, keys, and 
values

• Multi-headed
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I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product



Change #1: Self-Attention

• Previously: Decoder state 
looks for relevant encoder 
states

• Self-attention: Each 
encoder state now looks 
for relevant (other) 
encoder states

• Why? Build better 
representation for word in 
context by capturing 
relationships to other 
words
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I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product



Change #1: Self-attention

• Take x1 and dot product it with all 
T inputs (including itself)

• Apply softmax to convert to 
probability distribution

• Compute output o1 as weighted 
sum of inputs
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x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01



Change #1: Self-attention

• Take x1 and dot product it with all 
T inputs (including itself)

• Apply softmax to convert to 
probability distribution

• Compute output o1 as weighted 
sum of inputs

• Repeat for t=2, 3, …, T

• Replacement for recurrence
• RNN only allows information to flow 

linearly along sequence
• Now, information can flow from any 

index to any other index, as 
determined by attention
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x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1 o2 o3 o4 Output T x d matrix



Change #2: Separate queries, keys, and values

• Previously: We use input 
vectors in three ways
• As “query” for current index
• As “keys” to match with query
• As “values” when computing 

output

• Idea: Use separate vectors for 
each usage
• What each index “looks for” 

different from what it “matches 
with”

• What you store in output 
different from what you “look 
for”/“match with”
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x1 x2 x3 x4 Input T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Values

Query Keys

Dot products for x1

Probabilities for x1



+ .5 + .3 + .01= .19

Change #2: Separate queries, keys, and values

• Apply 3 separate linear layers to each of 
x1, …, xT to get
• Queries [q1, …, qT]
• Keys [k1, …, kT]

• Values [v1, …, vT]

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d 
to dimension dattn

• Dot product q1 with [k1, …, kT]

• Apply softmax to get probability 
distribution

• Compute o1 as weighted sum of [v1, …, 
vT]

• Repeat for t = 2, …, T
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k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix



+ .5 + .3 + .01= .19

Matrix form
• Apply 3 separate linear layers to input 

matrix X to get
• Query matrix Q
• Keys K

• Values V

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d 
to dimension dattn

• Compute Q x KT (T x T matrix)
• Each entry is dot product of one query 

vector with one key vector

• Normalize each row with softmax to get 
matrix of probabilities P

• Output = P x V

• Lessons
• Quadratic in T

• All you need is fast matrix multiplication
• All indices run in parallel
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k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix



Change #3: Making it Multi-headed

• Instead of doing 
attention once, have n 
different “heads”
• Each has its own 

parameters maps to 
dimension dattn = d/n 

• Concatenate at end to 
get output of size T x d

36

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24



Change #3: Making it Multi-headed

• Instead of doing attention 
once, have n different 
“heads”
• Each has its own 

parameters maps to 
dimension dattn = d/n 

• Concatenate at end to get 
output of size T x d

• Why? Different heads can 
capture different 
relationships between 
words

37

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Concatenate



The Multi-headed Attention building block

(9) Multi-headed Attention Layer

• Input: List of vectors x1, …, xT, each of size d
• Equivalent to a T x d matrix 

• Output: List of vectors h1, …, ht, each of size d
• Equivalent to another T x d matrix

• Formula: For each head i:
• Compute Q, K, V matrices using Wi

Q, Wi
K, Wi

V 
• Compute self attention output using Q, K, V to yield 

T x dattn matrix
• Finally, concatenate results for all heads

• Parameters:
• For each head i, parameter matrices Wi

Q, Wi
K, Wi

V of 
size dattn x d 

• (# of heads n is hyperparameter, dattn = d/n)

• In pytorch: nn.MultiheadAttention()
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Input x1, …, xT, each shape d

Multi-headed attention layer
Params: Wi

Q, Wi
K, Wi

V 

for i = 1, …, n

Output h1, …, hT, each shape d

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5



What do attention heads learn?

• This attention head seems to 
go from a pronoun to its 
antecedent (who the pronoun 
refers to)

• Other heads may do more 
boring things, like point to the 
previous/next word
• In this way, can do RNN-like 

things as needed

• But attention also can reach 
across long ranges
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Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we 

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and 
output a new T x d matrix

• Plus some bells and whistles…
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John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Embedding layer

• As before, learn a vector for each 
word in vocabulary

• Is this enough?
• Both attention and feedforward layers 

are order invariant

• Need the initial embeddings to also 
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index
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John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4

+ + + +

word vectors

positional 
embeddings

sum



Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in 
series

• Transformers
• Quadratic in sequence length (T x T 

matrices)

• But can be parallelized (big matrix 
multiplication)
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John kicked the

f1 f2
f3f0

kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John

ball

f4



Bells and whistles

• Attention: Scaled dot products

• Residual connections

• Layer Norm

• Tokenization: Byte Pair Encoding
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+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1 
with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning
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k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix



≈ 

Scaled dot product attention

• Earlier I said, “Dot product q1 
with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning
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k1 k2 k3 k4 Keys T x d matrix

100 200 150 -100

≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a 
chance to influence



Residual Connections & Layer Norm

• Feedforward and multi-headed 
attention layers
• Take in T x d matrix X 
• Output T x d matrix O

• We add a “residual” connection: we 
actually use X + O as output
• Makes it easy to copy information 

from input to output
• Also reduces vanishing gradient 

issues
• Think of O as how much we change 

the previous value

• Then, we add “Layer Normalization” 
to prevent very big or very small 
values

46

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Output w/ residual
T x d matrix

o1 o2 o3 o4x1 x2 x3 x4+ + + +



Byte Pair Encoding

• Normal word vectors have 
a problem: How to deal with 
super rare words?
• Names? Typos?

• Vocabulary can’t contain 
literally every possible word…

• Solution: Tokenize string 
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens

47

Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’, 
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword 
tokens



Putting it all together
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John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual 
connections + 
LayerNorm

BPE tokenization



Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections

• Instead, all “communication” between words in sequence is handled by 
attention

• Have multiple attention “heads” to learn different types of relationships 
between words

• Most famous modern language models (e.g., ChatGPT) are 
Transformers!
• Next time: Transformers as Decoders, Pre-training

• Later: Transformers + Reinforcement Learning = ChatGPT
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