
Deep Learning Review,
Transformers

Robin Jia
USC CSCI 467, Fall 2023

October 17, 2023

Parameters & Hyperparameters

Parameters

• Numbers that directly determine
the model’s predictions

• Must be learned
• Usually by choosing parameter

values that minimize some loss
function

• Example: w & b for logistic
regression, which makes
prediction

P(y=1 | x) = σ(wTx + b)

Hyperparameters

• Numbers that influence which
parameters are learned
• Thus, they indirectly influence

model’s predictions

• Cannot be learned—must be
chosen before learning starts
• Hyperparameter tuning: Can try

learning many times with different
hyperparameters, then pick the one
with best development accuracy

• Example: λ for L2 regularization

2

Deep Learning Review

• Neural Network = Many
“layers” stacked on top of
each other
• Layers built from a core set of

building blocks

• Arrangement of layers is
called an “architecture”

• Each layer takes in some
input and computes some
output

3

The Basic “Building Blocks”

(1) Linear Layer

• Input x: Vector of dimension din

• Output y: Vector of dimension dout

• Formula: y = Wx + b

• Parameters
• W: dout x din matrix

• b: dout vector

• In pytorch: nn.Linear()

4

Input x, shape (din,)

Output y, shape (dout,)

Linear Layer
Compute
y = Wx + b

Params: W, b

The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

5

Input x, any shape

Output y, same shape as x

Sigmoid Layer
Compute
yi = σ(xi)

for each i

The Basic “Building Blocks”

(2) Non-linearity Layer

• Input x: Any number/vector/matrix

• Output y: Number/vector/matrix of
same shape

• Possible formulas:
• Sigmoid: y = σ(x), elementwise
• Tanh: y = tanh(x), elementwise
• Relu: y = max(x, 0), elementwise

• Parameters: None

• In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

6

Input x, any shape

Output y, same shape as x

ReLU Layer
Compute

yi = max(xi, 0)
for each i

The Basic “Building Blocks”

(3) Loss Layer

• Inputs:
• ypred: shape depends on task
• ytrue: scalar (e.g., correct regression value or class index)

• Output z: scalar

• Possible formulas:
• Squared loss: ypred is scalar, z = (ypred – ytrue)2

• Softmax regression loss: ypred is vector of length C,

• Parameters: None

• In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

7

Input ypred,
scalar

Output z,
scalar

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input ytrue,
scalar

Building Linear Regression

• Step 1: Compute the loss on
one example
• Training example is (x, y)

• x is vector of length d, y is scalar

8

Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input x

Input y

L
in

e
a

r
M

o
d

e
l

Building Linear Regression

• Step 1: Compute the loss on
one example
• Training example is (x, y)

• x is vector of length d, y is scalar

• Step 2: Compute gradient of
loss with respect to all
parameters

• Step 3: Update all parameters
with gradient descent update
rule

9

Linear Layer
Outputs wTx + b

din=d, dout=1
Params: w, b

Output: loss

MSELoss Layer
Compute

z = (ypred – ytrue)2

Input x

Input y

L
in

e
a

r
M

o
d

e
l

Building an MLP (for regression)

• Steps for training are exactly the
same:

• Step 1: Compute the loss on one
example
• Training example is (x, y)
• x is vector of length d, y is scalar

• Step 2: Compute gradient of loss
with respect to all parameters
• No matter how many/which layers we

use, backpropagation can
automatically compute gradient of loss
with respect to parameters

• Step 3: Update all parameters with
gradient descent update rule

10

Linear Layer 2
din=dhidden, dout=1
Params: w2, b2

Output: loss

MSELoss Layer
z = (ypred – ytrue)2

Input x

Input y

ReLU Layer

Linear Layer 1
din=d, dout=dhidden

Params: w1, b1N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

CNN “Building Blocks”

(4) Convolutional Layer

• Input x: Tensor of dimension (width, height, nin)
• nin: Number of input channels (e.g. 3 for RGB images)

• Output y: Tensor of dimension (width’, height’, nout)
• width’, height’: New width & height, depends on stride and

padding

• nout: Number of output channels

• Formula: Convolve input with kernel
• Recall: This is in fact a linear operation

• Parameters: Kernel params of shape (K, K, nin, nout)

• In pytorch: nn.Conv2d()

11

Input x, shape (width, height, nin,)

Output y, shape (width’, height’, nout,)

Convolutional Layer
Convolve kernel

with input

Params: Kernel

CNN “Building Blocks”

(5) Max Pooling layer

• Input x: Tensor of dimension
(width, height, n)
• n: Number of channels

• Output y: Tensor of dimension
(width/2, height/2, n)

• Formula: In each 2x2 patch, compute
max

• Parameters: None

• In pytorch: nn.MaxPool2d()

12

Input x, shape (width, height, n)

Output y, shape (width/2, height/2, n)

Max Pool Layer
Compute max

over each 2x2 patch

Building a CNN Model

• A generic CNN architecture
• First use conv + relu + pool to

extract features
• Then use MLP to make final

prediction

• Basic steps are still all the
same
• Backpropagation still works

• Gradient descent needed to
update all parameters

13

Linear Layer 2
Params: w2, b2

Input x

ReLU Layer

Linear Layer 1
Params: w1, b1

N
e

u
ra

l N
e

tw
o

rk
 M

o
d

e
l

Convolutional Layer
Params: Kernel

Max Pool Layer

ReLU Layer

RNN “Building Blocks”

(6) RNN Layer

• Input: List of vectors x1, …, xT, each of size din
• E.g., xt is word vector for t-th word in sentence
• Equivalent to a T x din matrix

• Output: List of vectors h1, …, ht, each of size dout
• dout: Dimension of hidden state
• Equivalent to a T x dout matrix

• Formula (Elman RNN):

• Parameters:
• Wh: Matrix of shape (dout, dout)
• Wx: Matrix of shape (dout, din)
• b: Vector of shape (dout,)
• h0: Vector of shape (dout,)

• In pytorch: nn.RNN(), nn.LSTM(), etc.
14

Input x1, …, xT, each shape din

RNN Layer
Params: Wh, Wx, b, h0

Output h1, …, hT, each shape dout

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

RNN “Building Blocks”

(7) Word Vector Layer

• Input w: A word
• Must be in the vocabulary
• Can also input list of words

• Output: A vector of length d
• If input is many words, output is list of vectors

corresponding to each word

• Formula: Return word_vecs[w]

• Parameters:
• For each word w in vocabulary, there is a word vector

parameter vw of shape d
• Think of this as a dictionary called word_vecs, where

the keys are words & values are learned parameter
vectors

• In pytorch: nn.Embedding()

15

Input word w

Word Vector Layer
Params: vw for each w in vocab

Output: Vector vw of shape (d,)

Building an RNN encoder model

• A generic RNN architecture
• Map each word to a vector

• Feed word vectors to RNN to
generate list of hidden states

• Feed final hidden state to MLP to
make final prediction

• Basic steps are still all the same
• Backpropagation still works

• Gradient descent needed to
update all parameters

16
N

e
u

ra
l N

e
tw

o
rk

 M
o

d
e

l

Input words w1, …, wT

w1 w2 w3 w4 w5

h1 h2 h3 h4 h5

Word Vector Layer
Params: vw for each w in vocab

Linear Layer 2
Params: w2, b2

ReLU Layer

Linear Layer 1
Params: w1, b1

RNN Layer
Params: Wh, Wx, b, h0

Review: Attention (with dot product)
• Input:

• Encoder hidden states for each
input token

• Current decoder hidden state

• Find relevant input words
• Dot product current decoder hidden

state with all encoder hidden states
• Normalize dot products to

probability distribution with
softmax

• Output: “Context” vector c =
weighted average of encoder
states based on the probabilities

17

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6 e1
+.39 e2 e3

+.01c

Dot Product

Attention Layer as a Building Block

(8) Attention Layer

• Inputs:
• x1, …, xT: List of vectors to attend to, size d
• h: “query” vector to decide what to attend to, size d

• Output c: Convext vector of size d

• Formula:

• Parameters: None

• In pytorch: Implement with sequence of basic
operations

18

Input h of shape (d,)

Output: Vector c of shape (d,)

Attention Layer

Input x1, …, xT, each shape d

Summary: Neural Network Building Blocks

• Neural network components are like lego
bricks
• Can be assembled in many different ways
• Some have parameters, some don’t

• Training strategy is always the same
• (1) Compute loss
• (2) Take gradient of loss w.r.t. parameters
• (3) Gradient descent

• Backpropagation works on any architecture

• So, when we discuss neural architectures,
we only need to discuss the forward pass
• Backpropagation takes care of gradients
• Gradient descent takes care of learning

parameters

19

Announcements

• Midterm grades released

• Project Proposal grades & feedback released

• Midterm report due October 31
• Main goal: Obtain needed data & have a full pipeline that processes data,

trains a model, and gets some results

• Compare this model with some baseline (either an even simpler model or a
non-learning method)

• Results may or may not be “good”—just a starting point for final model

• Analyze errors and identify possible sources of improvement

20

Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

21

Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

• Syntactic dependencies

22

He ate steak with ketchup

He ate steak with a fork

Goes with “steak”

Modifies “ate”

Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

23

Challenges of modeling sequences

• Modeling relationships between
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

• Long range dependencies
• E.g., consistency of characters in

a novel

• Attention captures relationships
& doesn’t care about “distance”

24

Today: The Transformer Architecture

• Input: Sequence of words

• Output: Sequence of vectors, one per
word

• Same “type signature” as RNN

• Motivation
• Don’t do explicit sequential processing

• Instead, let attention figure out which
words are relevant to each other
• RNN assumes sequence order is what

matters

• “Attention is all you need”

25

John kicked the ball

Transformer

e1 e2 e3 e4

Transformer internals

• One transformer consists of
• Initial embeddings for each

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

26

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Feedforward layer

• Input: T x d matrix

• Output: Another T x d matrix

• Apply the same MLP
separately to each d-
dimensional vector
• Linear layer from d to dhidden

• ReLU (or other nonlinearity)

• Linear layer from dhidden to d

• Note: No information moves
between tokens here

27

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Transformer internals

• One transformer consists of
• Initial embeddings for each

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

28

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Modifying Attention

• What is a multi-headed
attention layer???

• Similar to attention we’ve
seen, but need to make 3
changes…
• Self-attention (no separate

encoder & decoder)

• Separate queries, keys, and
values

• Multi-headed

29

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product

Change #1: Self-Attention

• Previously: Decoder state
looks for relevant encoder
states

• Self-attention: Each
encoder state now looks
for relevant (other)
encoder states

• Why? Build better
representation for word in
context by capturing
relationships to other
words

30

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product

Change #1: Self-attention

• Take x1 and dot product it with all
T inputs (including itself)

• Apply softmax to convert to
probability distribution

• Compute output o1 as weighted
sum of inputs

31

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Change #1: Self-attention

• Take x1 and dot product it with all
T inputs (including itself)

• Apply softmax to convert to
probability distribution

• Compute output o1 as weighted
sum of inputs

• Repeat for t=2, 3, …, T

• Replacement for recurrence
• RNN only allows information to flow

linearly along sequence
• Now, information can flow from any

index to any other index, as
determined by attention

32

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1 o2 o3 o4 Output T x d matrix

Change #2: Separate queries, keys, and values

• Previously: We use input
vectors in three ways
• As “query” for current index
• As “keys” to match with query
• As “values” when computing

output

• Idea: Use separate vectors for
each usage
• What each index “looks for”

different from what it “matches
with”

• What you store in output
different from what you “look
for”/“match with”

33

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Values

Query Keys

Dot products for x1

Probabilities for x1

+ .5 + .3 + .01= .19

Change #2: Separate queries, keys, and values

• Apply 3 separate linear layers to each of
x1, …, xT to get
• Queries [q1, …, qT]
• Keys [k1, …, kT]

• Values [v1, …, vT]

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d
to dimension dattn

• Dot product q1 with [k1, …, kT]

• Apply softmax to get probability
distribution

• Compute o1 as weighted sum of [v1, …,
vT]

• Repeat for t = 2, …, T

34

k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix

+ .5 + .3 + .01= .19

Matrix form
• Apply 3 separate linear layers to input

matrix X to get
• Query matrix Q
• Keys K

• Values V

• Note: This adds parameters WQ, WK, WV

• Each linear layer maps from dimension d
to dimension dattn

• Compute Q x KT (T x T matrix)
• Each entry is dot product of one query

vector with one key vector

• Normalize each row with softmax to get
matrix of probabilities P

• Output = P x V

• Lessons
• Quadratic in T

• All you need is fast matrix multiplication
• All indices run in parallel

35

k1 k2 k3 k4 Keys T x dattn matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x dattn matrix

Change #3: Making it Multi-headed

• Instead of doing
attention once, have n
different “heads”
• Each has its own

parameters maps to
dimension dattn = d/n

• Concatenate at end to
get output of size T x d

36

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Change #3: Making it Multi-headed

• Instead of doing attention
once, have n different
“heads”
• Each has its own

parameters maps to
dimension dattn = d/n

• Concatenate at end to get
output of size T x d

• Why? Different heads can
capture different
relationships between
words

37

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (n=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Concatenate

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

• Input: List of vectors x1, …, xT, each of size d
• Equivalent to a T x d matrix

• Output: List of vectors h1, …, ht, each of size d
• Equivalent to another T x d matrix

• Formula: For each head i:
• Compute Q, K, V matrices using Wi

Q, Wi
K, Wi

V
• Compute self attention output using Q, K, V to yield

T x dattn matrix
• Finally, concatenate results for all heads

• Parameters:
• For each head i, parameter matrices Wi

Q, Wi
K, Wi

V of
size dattn x d

• (# of heads n is hyperparameter, dattn = d/n)

• In pytorch: nn.MultiheadAttention()
38

Input x1, …, xT, each shape d

Multi-headed attention layer
Params: Wi

Q, Wi
K, Wi

V

for i = 1, …, n

Output h1, …, hT, each shape d

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

What do attention heads learn?

• This attention head seems to
go from a pronoun to its
antecedent (who the pronoun
refers to)

• Other heads may do more
boring things, like point to the
previous/next word
• In this way, can do RNN-like

things as needed

• But attention also can reach
across long ranges

39

Transformer internals

• One transformer consists of
• Initial embeddings for each

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

40

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Embedding layer

• As before, learn a vector for each
word in vocabulary

• Is this enough?
• Both attention and feedforward layers

are order invariant

• Need the initial embeddings to also
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index

41

John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4

+ + + +

word vectors

positional
embeddings

sum

Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in
series

• Transformers
• Quadratic in sequence length (T x T

matrices)

• But can be parallelized (big matrix
multiplication)

42

John kicked the

f1 f2
f3f0

kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John

ball

f4

Bells and whistles

• Attention: Scaled dot products

• Residual connections

• Layer Norm

• Tokenization: Byte Pair Encoding

43

+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1
with [k1, …, kT]”

• Actually, you take dot product
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large

• This makes probabilities close
to 0/1

• Scaling dot products down
encourages more even attention
at beginning

44

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

≈

Scaled dot product attention

• Earlier I said, “Dot product q1
with [k1, …, kT]”

• Actually, you take dot product
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between

random vectors will be large

• This makes probabilities close
to 0/1

• Scaling dot products down
encourages more even attention
at beginning

45

k1 k2 k3 k4 Keys T x d matrix

100 200 150 -100

≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a
chance to influence

Residual Connections & Layer Norm

• Feedforward and multi-headed
attention layers
• Take in T x d matrix X
• Output T x d matrix O

• We add a “residual” connection: we
actually use X + O as output
• Makes it easy to copy information

from input to output
• Also reduces vanishing gradient

issues
• Think of O as how much we change

the previous value

• Then, we add “Layer Normalization”
to prevent very big or very small
values

46

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Output w/ residual
T x d matrix

o1 o2 o3 o4x1 x2 x3 x4+ + + +

Byte Pair Encoding

• Normal word vectors have
a problem: How to deal with
super rare words?
• Names? Typos?

• Vocabulary can’t contain
literally every possible word…

• Solution: Tokenize string
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens

47

Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’,
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword
tokens

Putting it all together

48

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual
connections +
LayerNorm

BPE tokenization

Conclusion: Transformers

• “Attention is all you need”
• Get rid of recurrent connections

• Instead, all “communication” between words in sequence is handled by
attention

• Have multiple attention “heads” to learn different types of relationships
between words

• Most famous modern language models (e.g., ChatGPT) are
Transformers!
• Next time: Transformers as Decoders, Pre-training

• Later: Transformers + Reinforcement Learning = ChatGPT

49

	Default Section
	Slide 1: Deep Learning Review, Transformers
	Slide 2: Parameters & Hyperparameters
	Slide 3: Deep Learning Review
	Slide 4: The Basic “Building Blocks”
	Slide 5: The Basic “Building Blocks”
	Slide 6: The Basic “Building Blocks”
	Slide 7: The Basic “Building Blocks”
	Slide 8: Building Linear Regression
	Slide 9: Building Linear Regression
	Slide 10: Building an MLP (for regression)
	Slide 11: CNN “Building Blocks”
	Slide 12: CNN “Building Blocks”
	Slide 13: Building a CNN Model
	Slide 14: RNN “Building Blocks”
	Slide 15: RNN “Building Blocks”
	Slide 16: Building an RNN encoder model
	Slide 17: Review: Attention (with dot product)
	Slide 18: Attention Layer as a Building Block
	Slide 19: Summary: Neural Network Building Blocks
	Slide 20: Announcements
	Slide 21: Challenges of modeling sequences
	Slide 22: Challenges of modeling sequences
	Slide 23: Challenges of modeling sequences
	Slide 24: Challenges of modeling sequences
	Slide 25: Today: The Transformer Architecture
	Slide 26: Transformer internals
	Slide 27: Feedforward layer
	Slide 28: Transformer internals
	Slide 29: Modifying Attention
	Slide 30: Change #1: Self-Attention
	Slide 31: Change #1: Self-attention
	Slide 32: Change #1: Self-attention
	Slide 33: Change #2: Separate queries, keys, and values
	Slide 34: Change #2: Separate queries, keys, and values
	Slide 35: Matrix form
	Slide 36: Change #3: Making it Multi-headed
	Slide 37: Change #3: Making it Multi-headed
	Slide 38: The Multi-headed Attention building block
	Slide 39: What do attention heads learn?
	Slide 40: Transformer internals
	Slide 41: Embedding layer
	Slide 42: Runtime comparison
	Slide 43: Bells and whistles
	Slide 44: Scaled dot product attention
	Slide 45: Scaled dot product attention
	Slide 46: Residual Connections & Layer Norm
	Slide 47: Byte Pair Encoding
	Slide 48: Putting it all together
	Slide 49: Conclusion: Transformers

