Deep Learning Review,
Transformers
Robin Jia

USC CSCI 467, Fall 2023
October 17, 2023

Parameters & Hyperparameters

Parameters Hyperparameters
 Numbers that directly determine « Numbers that influence which
the model’s predictions parameters are learned
: model’s predictions
 Usually by choosing parameter
values that minimize some loss « Cannot be learned—must be
function chosen before learning starts
« Example: w & b for logistic * Hyperparameter tuning: Can try
regression, which makes learning many times with different
orediction ' hyperparameters, then pick the one

with best development accuracy

P(y=11x) = o(w'x +b) » Example: A for L2 regularization

Deep Learning Review

* Neural Network = Many
“layers” stacked on top of
each other

* Layers built from a core set of
building blocks

« Arrangement of layers is
called an “architecture”

 Each layer takes in some
input and computes some
output

The Basic “Building Blocks”

(1) Linear Layer Output y, shape (d,)
* Input x: Vector of dimension d., ‘
» Qutput y: Vector of dimension d Linear Layer
Compute

 Formula:y =Wx +Db y=Wx+b
¢ Parameters Params: W’ b

« W:d,, x d,, matrix

 b:d,, vector]

* In pytorch: nn.Linear() Input x, shape (d,,,)

The Basic “Building Blocks”

(2) Non-linearity Layer
* [nput x: Any number/vector/matrix

« Qutput y: Number/vector/matrix of
same shape

 Possible formulas:
« Sigmoid: y = o(x), elementwise
« Tanh: y = tanh(x), elementwise
 Relu: y = max(x, 0), elementwise
« Parameters: None

* In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

Output y, same shape as x

Sigmoid Layer
Compute

y; = o(x;)
for eachi

ﬂk

Input x, any shape

The Basic “Building Blocks”

(2) Non-linearity Layer
* [nput x: Any number/vector/matrix

« Qutput y: Number/vector/matrix of
same shape

 Possible formulas:
« Sigmoid: y = o(x), elementwise
« Tanh: y = tanh(x), elementwise
 Relu: y = max(x, 0), elementwise
« Parameters: None

* In pytorch: torch.sigmoid(),
nn.functional.relu(), etc.

Output y, same shape as x

RelLU Layer
Compute

y; = max(x; 0)
for each i

ﬂk

Input x, any shape

The Basic “Building Blocks”

Output z,
(3) Loss Layer scalar

* Inputs:
* Yored- Shape depends on task
* Yiue SCalar (e.g., correct regression value or class index)

* OQutput z: scalar

 Possible formulas:
» Squared |0SS: Y, is scalar, Z = (Ypreq = Yirue)?
- Softmax regression loss: y, .4 is vector of length C,

C 7'y
Z = — (ypred [ytrue] — 10g Z eXp(ypfed [Z])) ‘

1 =1
Input y, .4 Input Y, e
« Parameters: None scalar scalar

* In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Compute
Z= (Ypred B ytrue)2

Building Linear Regression

Output: loss

» Step 1: Compute the loss on
one example
 Training example is (X, y)
» X is vector of length d, y is scalar

2= (Vs ~ Yo’

L :

§ inear Laye

. Outputs wix + b Input y
(40

2 din=d' dout=‘I

C

T Params: w, b

—

Input x

Building Linear Regression

Output: loss
» Step 1: Compute the loss on

one example
« Training example is (X, y)
* X is vector of length d, y is scalar

MSELoss Layer

Compute

» Step 2: Compute gradient of o Z = (Y}Mue)z

loss with respect to all S .

£ inear Laye

parameters _— Outputs w'x + b Input y
. : Il parameter 2 din=d, Aoy~

Step 3 Update all parameters £ i @

with gradient descent update —

rule

Input x

Building an MLP (for regression)

- Steps for training are exactly the
same:

» Step 1: Compute the loss on one
example
 Training example is (x, y)
» X is vector of length d, y is scalar

» Step 2: Compute gradient of loss
with respect to all parameters

* No matter how many/which layers we
use, backpropagation can
automatically compute gradient of loss
with respect to parameters

« Step 3: UpdatWith
gradient descent e

Neural Network Model

Output: loss

MSELoss Layer

- (ypr d

inear Layer
din=dhidden' dout=‘I

Params:@@

true)

Input y

RelLU Layer

Linear Layer 1
dinzd' dout=dh

idden
Params:@(éB

N

Input x

10

CNN “Building Blocks”

(4) Convolutional Layer Output y, shape (width’, height’, n,,,,)

* Input x: Tensor of dimension (width, height, n,)
* n,,: Number of input channels (e.g. 3 for RGB images)

« Output y: Tensor of dimension (width’, height’, n_,) onvolutional Laye
- width’, height’: New width & height, depends on stride and Convolve kernel
padding with input

* n,,. Number of output channels

out*

« Formula: Convolve input with kernel
* Recall: This is in fact a linear operation [

« Parameters: Kernel params of shape (K, K, n,,, n_,)
* In pytorch: nn.Conv2d()

Params: Kernel

Input x, shape (width, height, n..,)

CNN “Building Blocks”

(5) Max Pooling layer Output y, shape (width/2, height/2, n)

* [nput x: Tensor of dimension
(width, height, n)

* n: Number of channels
« Qutput y: Tensor of dimension

Max Pool Layer
Compute max

(width/2, height/2, n) over each 2x2 patch
» Formula: In each 2x2 patch, compute

max
 Parameters: None [

e In pytorch: nn.MaxPoolzd() Input x, shape (width, height, n)

Building a CNN Model

A generic CNN architecture /lﬁear La eh\
« First use conv + relu + pool to Params:&\%@

Max Pool Layer
» Backpropagation still works

 Gradient ded to RelLU Layer
updateqll parameters / Convolutional Layer \

Params:

extract features § ReLU Layer
 Then use MLP to make final > :
prediction x Linear Layer 1
: : Q Params:(w)(b’
* Basic steps are still all the =
same Z
©
5
()]
=z

Input x

13

RNN “Building Blocks”

(6) RNN Layer

: : Output h,, ..., hy, each shape d_,
* Input: List of vectors x;, ..., X7, each of size d,, PUL s T PE Cout

 E.g., X, is word vector for t-th word in sentence hy hy, hy hy hs

« Equivalentto a T x d;, matrix ‘ ‘ ‘ ‘ ‘
 Qutput: List of vectors h,, .., h,, each of size d

* d,,. Dimension of hidden state RNN Layer

- Equivalentto a T x d,,, matrix Params: Wy, W,, b, h,
« Formula (Elman RNN): A; = tanh (Wj,h, 1 + W2, + b) ‘ ‘ ‘ ‘ ‘
« Parameters:

« W,: Matrix of shape (d,, dout) X1 X2 X3 X4 X5

» W,: Matrix of shape (d,, din) Input X, ..., X;, each shape d,

* b: Vector of shape (d,,)
« h,: Vector of shape (d,,,)

* In pytorch: nn.RNN(), nn.LSTM(), etc.

RNN “Building Blocks”

(7) Word Vector Layer

Input w: A word
« Must be in the vocabulary
« Can also input list of words

Output: A vector of length d
- If input is many words, output is list of vectors
corresponding to each word
Formula: Return word_vecs[w]

Parameters:

« For each word w in vocabulary, there is a word vector
parameter v,, of shape d

« Think of this as a dictionary called word_vecs, where
the keys are words & values are learned parameter
vectors

In pytorch: nn.Embedding()

Output: Vector v,, of shape (d,)

|

Word Vector Layer
Params: v,, for each w in vocab

|

Input word w

Building an RNN encoder model

A generic RNN architecture
« Map each word to a vector

» Feed word vectors to RNN to
generate list of hidden states

* Feed final hidden state to MLP to
make final prediction

 Basic steps are still all the same
« Backpropagation still works

* Gradientd eeded to
updatﬁﬁ@

Neural Network Model

fhear La
Params: 2

RelLU Layer

Linear Laver 1
arams:@,
¢ ¢ t t X

RNN Layer

Params:

Word Vector Layer
Params@for each w in vocab

t t 1 t t
W, W, Wi W, W

Input words w, ..., Wy

16

Review: Attention (with dot product)

* [nput:
- « Encoder hidden states for each
C =.6lg+.39% g, +01 |e, input token
| N » Current hidden state
6 .39 .01 ';‘;’Srtwsgtziggowerggaa'g » Find relevant input words
T t t « Dot product current decoder hidden

2 : Dot Product state with all encoder hidden states
ﬁ J/x ot Frodue - Normalize dot products to

probability distribution with
€5 h; softmax

 Output: “Context” vector ¢ =
weighted average of encoder
states based on the probabilities

| am hungry

17

Attention Layer as a Building Block

(8) Attention Layer Output: Vector c of shape (d,)

* Inputs:
* X, .., X7: List of vectors to attend to, size d
 h: “query” vector to decide what to attend to, size d

» Output c: Convext vector of size d
* Formula: exp(h’ x4)

Py = Vi=41,...,T
t 23;1 exp(h ' z;) { }

T
C = E Pt
t=1

« Parameters: None

* In pytorch: Implement with sequence of basic
operations

Input h of shape (d,)

Input x4, ..., X1, each shape d

Summary: Neural Network Building Blocks

Neural network components are like lego
bricks

« Can be assembled in many different ways
« Some have parameters, some don't

Training strategy is always the same
« (1) Compute loss
* (2) Take gradient of loss w.r.t. parameters
* (3) Gradient descent

Backpropagation works on any architecture

So, when we discuss neural architectures,
we only need to discuss the forward pass

« Backpropagation takes care of gradients

 Gradient descent takes care of learning
parameters

19

Announcements

« Midterm grades released
* Project Proposal grades & feedback released

 Midterm report due October 31

« Main goal: Obtain needed data & have a full pipeline that processes data,
trains a model, and gets some results

« Compare this model with some baseline (either an even simpler model or a
non-learning method)

 Results may or may not be “good”—just a starting point for final model
* Analyze errors and identify possible sources of improvement

Challenges of modeling sequences

3] o = : : :
s 185, 3 %. 4 < Modeling relationships between
e £ oflsle g5 .58 &
ﬁ%%ﬁﬂﬂga‘aEq.—u v words
L' . .
ccord Translation alignment
sur
la

Zone

économique
europeenne
a

éteé
signé
en
ao(t
1992

<end>

Challenges of modeling sequences

Goes with “steak” * Modeling relationships between
words
He ate Steak Wlth kEtChUp e Translation alignment
Modifies “ate” Syntactic dependencies

He ate steak with a fork

22

Challenges of modeling sequences

— * Modeling relationships between
‘I voted for Nader because he was most
words
— . .
aligned with my values,” she said. Translation alignment

 Syntactic dependencies
 Coreference relationships

23

Challenges of modeling sequences

* Modeling relationships between
words
 Translation alignment
 Syntactic dependencies
 Coreference relationships

» Long range dependencies
 E.g., consistency of characters in
a novel

 Attention captures relationships
& doesn't care about “distance”

Today: The Transformer Architecture

e, e, ed ey

* Input: Sequence of words
I Output: Sequence of vectors, one per

word
Transformer « Same “type signature” as RNN

1 * Motivation
« Don't do explicit sequential processing

* Instead, let attention figure out which
words are relevant to each other

* RNN assumes sequence order is what
matters

 “Attention is all you need”

John kicked the Dball

Transformer internals

e e e e, Final T x d matrix .
1 i 1 O * One transformer consists of
1 » Initial embeddings for each

Feedforward word of size d
:) « Let T =#words, so initially we

Multi-head Attention have a T x d matrix
Feedforward * Alternating layers of
: : « “Multi-headed” attention layer

Multi-head Attention

» Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding - Plus some bells and whistles...

John kicked the ball #words=T=4

Feedforward layer

04 |0
P
hi |h,
P
Xy %,

 Input: T x d matrix
* Qutput: Another T x d matrix

Linear * Apply the same MLP
separately to each d-
dimensional vector
* Linear layer from d to d;,44en
 ReLU (or other nonlinearity)
e Linear layer from dy, 440, 10 d

Output T x d matrix

Hidden states
(T X d}4gen Matrix)

Linear + ReLU
Input T x d matrix

 Note: No information moves
between tokens here

27

Transformer internals

e e e e, Final T x d matrix .
1 i 1 * One transformer consists of
1 » Initial embeddings for each
Feedforward word of size d
; . « Let T =#words, so initially we
Multi-head Attention have a T x d matrix
Feedforward « Alternating layers of
: : “Multi-headed” attention layer
Multi-head Attention

 Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding - Plus some bells and whistles...

John kicked the ball #words=T=4

Modifying Attention

c|= .6 le+.39 g +.01 e, * What S & multi-headed

attention layer???

.6 .39 .01 Normalize to probabilit . :)

- seen, but need to make 3

ﬁ _ADN Product
changes...

e, e h, - Self-attention (no separate

| am hungry encoder & decoder)

« Separate queries, keys, and
values

* Multi-headed

29

Change #1: Self-Attention

+.39 e, +.01 e,

.01

S

Normalize to probability
distribution w/ softmax

€3 h,

MKADN Product

| am hungry

 Previously: Decoder state
looks for relevant encoder
states

 Self-attention: Each
encoder state now looks
for relevant (other)
encoder states

« Why? Build better
representation for word in
context by capturing
relationships to other
words

30

Change #1: Self-attention

 Take x, and dot product it with all
19(Xq| + .5 [Xo|+ .3|Xq + .01|X, T inputs (including itself)

2
|

« Apply softmax to convert to

19 5 3 .01 Probabilities for x, probabilitydiStl‘ibUTiOn

1 2 1.5 -1 Dot products f :
m OLPIOGHES TGy, Compute output o, as weighted
sum of inputs

X1 X5 X3 X, Input T x d matrix

31

Change #1: Self-attention

 Take x, and dot product it with all
T inputs (including itself)

» Apply softmax to convert to
19 5 3 .01 Probabilities for x, probability distribution

1 2 15 -1 Dotproductsforx, gom %ﬁﬁg&tg ut 0, as weighted

k ; N » Repeat fort=2,3, .., T

X Xy Xg |[X4 InputT xdmatrix « Replacement for recurrence

* RNN only allows information to flow
linearly along sequence

* Now, information can flow from any
index to any other index, as
determined by attention

0, 0, O 0, OutputT x d matrix

32

Change #2: Separate queries, keys, and values

Values
/N * Previously: We use input
0 = . 19(Xq| + .5 X + .3|Xg + .01|X, VeCtO';S In tbree ways
« As “query” for current index
19 5 3 .01 Probabilities for x, * As "keys” to match with query
« As “values” when computing
1 2 1.5 -1 Dot products for x, output
W NN * |dea: Use separate vectors for
X X X X Input T x d matrix each usage
1 . ; 3y What each index “looks for”
/ ~dX different from what it “matches
Ke with”
Query ysS

« What you store in output
different from what you “look
for’/“match with”

33

Change #2: Separate queries, keys, and values

Values

—/

Vi vy
2 1.5
k, &

V3

ds

Vg

Dot products for X,

Keys T x d

attn

Queries T x d

matrix

attn

matrix

Apply 3 separate linear layers to each of
X, .., X7 1O get

Queries [q4, ..., 9]
« Keys [k, ..., ki
 Values [v,, ..., V4]
« Note: This adds parameters WQ, WK, WV

- Each linear layer maps from dimension d
to dimension d_,

Dot product g, with [k, ..., k]
Apply softmax to get

Compute o, as weighted sum of [v,, ...,

V4l
Repeatfort=2,..,T

34

Matrix form

Values

—/

d;

Vi vy
2 1.5
ky ks

V3

ds

ds

d4

V4

Dot products for X,

Keys T x d

attn

Queries T x d

matrix

attn

matrix

Apply 3 separate linear layers to input
matrix X to get

* Query matrix Q

 KeysK

* Values V

* Note: This adds parameters WQ, WK, WV

« Each linear layer maps from dimension d
to dimension d_,

Compute Q x KT (T x T matrix)

« Each entry is dot product of one query

vector with one key vector

Normalize each row with softmax to get
matrix of probabilities

Output =~ xV

Lessons
 QuadraticinT
 All you need is fast matrix multiplication

« All indices run in parallel .

Change #3: Making it Multi-headed

» Instead of doing
Eachheadoutputs ~ Att€ntion once, have n

11| fh12 113 flig 21| fl22 1123 fl24 Txd/2matrix(n=2) different “heads”
Attention head #1 | | Attention head #2 « Each has its own

T~ —" parameters maps to
dimension d_,,, = d/n

 Concatenate at end to
get output of size T x d

X1 X5 X3 X, InputT x d matrix

36

Change #3: Making it Multi-headed

Concatenate Instead of doir)g attention
o hend once, have n different
ac ead outputs " n
11 "2 "13 ['14 21 1722 ['23 ['24 Txd/2 matrix?n=2) heads
« Each has its own
Attention head #1 | | Attention head #2 parameters maps to
v\l/' dimension d_, = d/n
: ‘ | - Concatenate at end to get
X1 X7 X3 |X4 InputT xdmatrix output of size T x d

« Why? Different heads can
capture different
relationships between
words

37

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

Input: List of vectors x;, ..., Xy, each of size d Outputhy, ..., hy, each shape d

« Equivalent to a T x d matrix h, h, hy hy hg
e Output: List of vectors h,, ..., h,, each of size d ‘ ‘ ‘ ‘ ‘
« Equivalent to another T x d matrix

Multi-headed attention layer
Params: W.Q, WK, W.Y

Formula: For each head i;
« Compute Q, K, V matrices using W.Q, WK, WV

« Compute self attention output using Q, K, V to yield fori=1,..,n
T x d 4, Matrix ‘ ‘ ‘ ‘ ‘
« Finally, concatenate results for all heads
« Parameters: X1 X2 X3 X4 Xs
« For each head i, parameter matrices W.Q, WK, W,V of Input x4, ..., X1, €ach shape d

size d_,, x d
* (# of heads nis hyperparameter, d_,,, = d/n)

In pytorch: nn.MultiheadAttention()

What do attention heads learn?

She

He

Gender-specific term

[Layer: 5 +

The
girl
and
the
boy
walked
home

She

Layer: 5 &

The

girl
and
the
boy
walked
home

He

The Later
girl
and Alice
the came
boy up
walked to
home Bob
She She
Layer: 5§ %
The Late
girl ;
and Alice
the came
boy up
walked to
home Bob

He

Layer: 5 %

Name

Later
Alice
to
Bob

She

Later

Alice

came

Bob

 This attention head seems to
go from a pronoun to its
antecedent (who the pronoun
refers to)

* Other heads may do more
boring things, like point to the
previous/next word

* In this way, can do RNN-like
things as needed

e But attention also can reach
across long ranges

39

Transformer internals

e e e e, Final T x d matrix .
1 i > i * One transformer consists of
I » Initial embeddings for each

Feedforward word of size d
: : « Let T =#words, so initially we

Multi-head Attention have a T x d matrix
Feedforward « Alternating layers of
: : « “Multi-headed” attention layer

Multi-head Attention

 Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding - Plus some bells and whistles...

John kicked the ball #words=T=4

Embedding layer

* As before, learn a vector for each

word in vocabulary positional
oF P2 Ps3 P4 embeddings
. I ?
Is this enough” N N . 1+ sum
 Both attention and feedforward layers
are order invariant Whon -~ Wicked ~ Wihg Wpall word vectors

* Need the initial embeddings to also 1

encode order of words!
John kicked the ball

» Solution: Positional embeddings
* Learn a different vector for each index
* Gets added to word vector at that index

41

Runtime comparison

fO—Pf.I—b f2—>f3—>f4 .RNNS

) 4 4)

John kicked the ball * Linear in sequence length
 But all operations have to happen in
€ € €3 ey series
Feedforward * Transformers
Multi-head Attention » Quadratic in sequence length (T x T
matrices)
Feedforward « But can be parallelized (big matrix
Multi-head Attention multiplication)
u, us ug |uy

John kicked the ball

42

Bells and whistles

 Attention: Scaled dot products
 Residual connections

* Layer Norm

 Tokenization: Byte Pair Encoding

43

Scaled dot product attention

« Earlier | said, “Dot product g,
0= 19|Vl + .5 Vol + .3|vg+ 01|V, with [k, ..., kq]”

 Actually, you take dot product

19 D 3 .01 ' lities f M and then divide by \/d

K, K, ki |k KeysT xd matrix « If d large, dot product between
= random vectors will be large

. , » This makes probabilities close
op d, d3 d4 Queries T x d matrix to 0/1

« Scaling dot products down
encourages more even attention
at beginning

44

Scaled dot product attention

04 = [¥2 chance to influence
100 200 150 -100
ki kg kg |k,
d; op ds d4

This is bad at beginning—
should give all positions a

« Earlier | said, “Dot product g,
with [k, ..., kq]”

 Actually, you take dot product

Probabilities for x, and then divide by JVAdgtin
Dot products forx, Why?

« If d large, dot product between
random vectors will be large

, , » This makes probabilities close
Queries T x d matrix to 0/

Keys T x d matrix

« Scaling dot products down
encourages more even attention
at beginning

45

Residual Connections & Layer Norm

« Feedforward and multi-headed
attention layers
« Take in T x d matrix X
e Output T x d matrix O

« We add a “residual” connection: we
actually use X + O as output

« Makes it easy to copy information
from input to output

» Also reduces vanishing gradient
issues

» Think of O as how much we change
the previous value

« Then, we add “Layer Normalization”
to prevent very big or very small
values

oF

Output w/ residual
T x d matrix

O +|Xy| [03+|Xg |04 +[Xy4
0, o4 /o,
Ll 1]
h, hy | |hy
P\ T\

Output T x d matrix
Linear

Hidden states
(T X d}4gen Matrix)

Linear + RelLU

Input T x d matrix

Byte Pair Encoding

* Normal word vectors have
a problem: How to deal with
super rare words?

 Names? Typos?

« Vocabulary can't contain
literally every possible word...

e Solution: Tokenize String Ar’ ’ag’,.’orn’, “told’, “Fro/ 'do’, 12 subword
into “subword tokens” “to’ “mind’, "L’ 'oth’ 'lor’ 'ien’ tokens
« Common words = 1 token
« Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

47

Putting it all together

€,

€, €3

1

€4

S

Final T x d matrix

Feedforward

~
\Add residual

\

Multi-head Attention

/

[connections +
— LayerNorm

Feedforward

-

/

/

Multi-head Attention

U,

U, Us

u

D

Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
ball #words=T=4

John

kicked the

48

Conclusion: Transformers

 “Attention is all you need”
* Get rid of recurrent connections

* Instead, all “communication” between words in sequence is handled by
attention

« Have multiple attention “heads” to learn different types of relationships
between words

« Most famous modern language models (e.g., ChatGPT) are
Transformers!
* Next time: Transformers as Decoders, Pre-training
 Later: Transformers + Reinforcement Learning = ChatGPT

	Default Section
	Slide 1: Deep Learning Review, Transformers
	Slide 2: Parameters & Hyperparameters
	Slide 3: Deep Learning Review
	Slide 4: The Basic “Building Blocks”
	Slide 5: The Basic “Building Blocks”
	Slide 6: The Basic “Building Blocks”
	Slide 7: The Basic “Building Blocks”
	Slide 8: Building Linear Regression
	Slide 9: Building Linear Regression
	Slide 10: Building an MLP (for regression)
	Slide 11: CNN “Building Blocks”
	Slide 12: CNN “Building Blocks”
	Slide 13: Building a CNN Model
	Slide 14: RNN “Building Blocks”
	Slide 15: RNN “Building Blocks”
	Slide 16: Building an RNN encoder model
	Slide 17: Review: Attention (with dot product)
	Slide 18: Attention Layer as a Building Block
	Slide 19: Summary: Neural Network Building Blocks
	Slide 20: Announcements
	Slide 21: Challenges of modeling sequences
	Slide 22: Challenges of modeling sequences
	Slide 23: Challenges of modeling sequences
	Slide 24: Challenges of modeling sequences
	Slide 25: Today: The Transformer Architecture
	Slide 26: Transformer internals
	Slide 27: Feedforward layer
	Slide 28: Transformer internals
	Slide 29: Modifying Attention
	Slide 30: Change #1: Self-Attention
	Slide 31: Change #1: Self-attention
	Slide 32: Change #1: Self-attention
	Slide 33: Change #2: Separate queries, keys, and values
	Slide 34: Change #2: Separate queries, keys, and values
	Slide 35: Matrix form
	Slide 36: Change #3: Making it Multi-headed
	Slide 37: Change #3: Making it Multi-headed
	Slide 38: The Multi-headed Attention building block
	Slide 39: What do attention heads learn?
	Slide 40: Transformer internals
	Slide 41: Embedding layer
	Slide 42: Runtime comparison
	Slide 43: Bells and whistles
	Slide 44: Scaled dot product attention
	Slide 45: Scaled dot product attention
	Slide 46: Residual Connections & Layer Norm
	Slide 47: Byte Pair Encoding
	Slide 48: Putting it all together
	Slide 49: Conclusion: Transformers

