Deep Learning Review, Transformers

Robin Jia

USC CSCI 467, Fall 2023
October 17, 2023

Parameters \& Hyperparameters

Parameters

- Numbers that directly determine the model's predictions
- Must be learned
- Usually by choosing parameter values that minimize some loss function
- Example: w \& b for logistic regression, which makes prediction

$$
P(y=1 \mid x)=\sigma\left(w^{\top} x+b\right)
$$

Hyperparameters

- Numbers that influence which parameters are learned
- Thus, they indirectly influence model's predictions
- Cannot be learned-must be chosen before learning starts
- Hyperparameter tuning: Can try learning many times with different hyperparameters, then pick the one with best development accuracy
- Example: $\boldsymbol{\lambda}$ for L2 regularization

Deep Learning Review

- Neural Network = Many "layers" stacked on top of each other
- Layers built from a core set of building blocks
- Arrangement of layers is called an "architecture"
- Each layer takes in some input and computes some output

The Basic "Building Blocks"

(1) Linear Layer

- Input x: Vector of dimension $\mathrm{d}_{\text {in }}$
- Output y : Vector of dimension $d_{\text {out }}$
- Formula: $\mathrm{y}=\mathrm{Wx}+\mathrm{b}$
- Parameters
- W: $\mathrm{d}_{\text {out }} \times \mathrm{d}_{\text {in }}$ matrix
- b: $d_{\text {out }}$ vector
- In pytorch: nn.Linear()

Output y , shape $\left(\mathrm{d}_{\text {outr }}\right)$

The Basic "Building Blocks"

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
- Sigmoid: $y=\sigma(x)$, elementwise
- Tanh: $\mathrm{y}=\tanh (\mathrm{x})$, elementwise
- Relu: $y=\max (x, 0)$, elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

Output y, same shape as x

The Basic "Building Blocks"

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
- Sigmoid: $y=\sigma(x)$, elementwise
- Tanh: $\mathrm{y}=\tanh (\mathrm{x})$, elementwise
- Relu: $y=\max (x, 0)$, elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

Output y, same shape as x

Input x, any shape

The Basic "Building Blocks"

(3) Loss Layer

Output z , scalar

- Inputs:
- $\mathrm{y}_{\text {pred }}$: shape depends on task
- $y_{\text {true }}$: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:
- Squared loss: $y_{\text {pred }}$ is scalar, $z=\left(y_{\text {pred }}-y_{\text {true }}\right)^{2}$
- Softmax regression loss: $y_{\text {pred }}$ is vector of length C, $z=-\left(y_{\text {pred }}\left[y_{\text {true }}\right]-\log \sum_{i=1}^{C} \exp \left(y_{\text {pred }}[i]\right)\right)$
- Parameters: None
- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Building Linear Regression

- Step 1: Compute the loss on one example
- Training example is (x, y)
- x is vector of length d, y is scalar

Building Linear Regression

- Step 1: Compute the loss on one example
- Training example is (x, y)
- x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
- Step 3: Update all parameters with gradient descent update rule

Building an MLP (for regression)

- Steps for training are exactly the same:
- Step 1: Compute the loss on one example
- Training example is (x, y)
- x is vector of length d, y is scalar
- Step 2: Compute gradient of loss with respect to all parameters
- No matter how many/which layers we use, backpropagation can automatically compute gradient of loss with respect to parameters
- Step 3: Update@all parameterswith gradient descent updaterule

CNN "Building Blocks"

(4) Convolutional Layer

Output y , shape (width', height', $\mathrm{n}_{\text {out }}$)

- Input x: Tensor of dimension (width, height, $\mathrm{n}_{\text {in }}$)
- n_{in} : Number of input channels (e.g. 3 for RGB images)
- Output y: Tensor of dimension (width', height', $\mathrm{n}_{\text {out }}$)
- width', height': New width \& height, depends on stride and padding
- $\mathrm{n}_{\text {out }}$: Number of output channels
- Formula: Convolve input with kernel
- Recall: This is in fact a linear operation
- Parameters: Kernel params of shape ($\mathrm{K}, \mathrm{K}, \mathrm{n}_{\mathrm{in},}, \mathrm{n}_{\text {out }}$)
- In pytorch: nn.Conv2d()

Input x, shape (width, height, n_{in})

CNN "Building Blocks"

(5) Max Pooling layer

- Input x: Tensor of dimension (width, height, n)
- n: Number of channels
- Output y: Tensor of dimension (width/2, height/2, n)
- Formula: In each 2×2 patch, compute max
- Parameters: None
- In pytorch: nn.MaxPool2d()

Output y , shape (width/2, height/2, n)

Input x , shape (width, height, n)

Building a CNN Model

- A generic CNN architecture
- First use conv + relu + pool to extract features
- Then use MLP to make final prediction
- Basic steps are still all the same
- Backpropagation still works
- Gradient descent needed to update@all parameters

RNN "Building Blocks"

(6) RNN Layer

- Input: List of vectors x_{1}, \ldots, x_{T}, each of size $d_{\text {in }}$
- E.g., x_{t} is word vector for t-th word in sentence
- Equivalent to a $\mathrm{Tx}_{\mathrm{in}}$ matrix
- Output: List of vectors h_{1}, \ldots, h_{t}, each of size $d_{\text {out }}$
- $\mathrm{d}_{\text {out }}$: Dimension of hidden state
- Equivalent to a Tx $\mathrm{d}_{\text {out }}$ matrix
- Formula (Elman RNN): $h_{t}=\tanh \left(W_{h} h_{t-1}+W_{x} x_{t}+b\right)$
- Parameters:
- W_{h} : Matrix of shape ($\mathrm{d}_{\text {out }} \mathrm{d}_{\text {out }}$)
- W_{x} : Matrix of shape $\left(\mathrm{d}_{\text {out }}, \mathrm{d}_{\text {in }}\right)$
- b : Vector of shape ($\mathrm{d}_{\text {out }}$)
- h_{0} : Vector of shape ($\mathrm{d}_{\text {out }}$)
- In pytorch: nn.RNN(), nn.LSTM(), etc.

Output h_{1}, \ldots, h_{T}, each shape $d_{\text {out }}$

Input x_{1}, \ldots, x_{T}, each shape $d_{\text {in }}$

RNN "Building Blocks"

(7) Word Vector Layer

- Input w: A word
- Must be in the vocabulary
- Can also input list of words
- Output: A vector of length d
- If input is many words, output is list of vectors corresponding to each word
- Formula: Return word_vecs[w]
- Parameters:
- For each word win vocabulary, there is a word vector parameter v_{w} of shape d

- Think of this as a dictionary called word_vecs, where the keys are words \& values are learned \bar{p} parameter vectors
- In pytorch: nn.Embedding()

Building an RNN encoder model

- A generic RNN architecture
- Map each word to a vector
- Feed word vectors to RNN to generate list of hidden states
- Feed final hidden state to MLP to make final prediction
- Basic steps are still all the same
- Backpropagation still works
- Gradient descent needed to update all parameters

Review: Attention (with dot product)

- Input:
- Encoder hidden states for each input token
- Current decoder hidden state
- Find relevant input words
- Dot product current decoder hidden state with all encoder hidden states
- Normalize dot products to probability distribution with softmax
- Output: "Context" vector $c=$ weighted average of encoder states based on the probabilities

Attention Layer as a Building Block

(8) Attention Layer

- Inputs:
- $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$: List of vectors to attend to, size d
- h: "query" vector to decide what to attend to, size d
- Output c: Convext vector of size d
- Formula:

$$
\begin{aligned}
p_{t} & =\frac{\exp \left(h^{\top} x_{t}\right)}{\sum_{i=1}^{T} \exp \left(h^{\top} x_{i}\right)} \forall i=\{1, \ldots, T\} \\
c & =\sum_{t=1}^{T} p_{t} x_{t}
\end{aligned}
$$

- Parameters: None
- In pytorch: Implement with sequence of basic operations

Summary: Neural Network Building Blocks

- Neural network components are like lego bricks
- Can be assembled in many different ways
- Some have parameters, some don't
- Training strategy is always the same
- (1) Compute loss
- (2) Take gradient of loss w.r.t. parameters
- (3) Gradient descent
- Backpropagation works on any architecture
- So, when we discuss neural architectures, we only need to discuss the forward pass

- Backpropagation takes care of gradients
- Gradient descent takes care of learning parameters

Announcements

- Midterm grades released
- Project Proposal grades \& feedback released
- Midterm report due October 31
- Main goal: Obtain needed data \& have a full pipeline that processes data, trains a model, and gets some results
- Compare this model with some baseline (either an even simpler model or a non-learning method)
- Results may or may not be "good"-just a starting point for final model
- Analyze errors and identify possible sources of improvement

Challenges of modeling sequences

- Modeling relationships between words
- Translation alignment

Challenges of modeling sequences

Modifies "ate"
He ate steak with a fork

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies

Challenges of modeling sequences

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies
- Coreference relationships

Challenges of modeling sequences

- Modeling relationships between words
- Translation alignment
- Syntactic dependencies
- Coreference relationships
- Long range dependencies
- E.g., consistency of characters in a novel
- Attention captures relationships \& doesn't care about "distance"

Today: The Transformer Architecture

- Input: Sequence of words
- Output: Sequence of vectors, one per word
- Same "type signature" as RNN
- Motivation
- Don't do explicit sequential processing
- Instead, let attention figure out which words are relevant to each other
- RNN assumes sequence order is what matters
- "Attention is all you need"

Transformer internals

Multi-head Attention
Feedforward

- One transformer consists of
- Initial embeddings for each word of size d
- Let T = \#words, so initially we have a Txd matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Feedforward layer

- Input: T x d matrix
- Output: Another T x d matrix
- Apply the same MLP separately to each ddimensional vector
- Linear layer from d to $\mathrm{d}_{\text {hidden }}$
- ReLU (or other nonlinearity)
- Linear layer from $\mathrm{d}_{\text {hidden }}$ to d
- Note: No information moves between tokens here

Transformer internals

Multi-head Attention

Feedforward

Multi-head Attention

U_{2}
u_{3}

Initial T x d matrix

John kicked the ball \#words = T = 4

- One transformer consists of
- Initial embeddings for each word of size d
- Let T = \#words, so initially we have a T x d matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Modifying Attention

$\mathrm{c}=.6 \sqrt[\mathrm{e}_{1}]{ }+.39 \sqrt{\mathrm{e}_{2}}+.01 \mathrm{e}_{3}$

- What is a multi-headed attention layer???
- Similar to attention we've seen, but need to make 3 changes...
- Self-attention (no separate encoder \& decoder)
- Separate queries, keys, and values
- Multi-headed

Change \#1: Self-Attention

$\mathrm{c}=.6 \sqrt[\mathrm{e}_{1}]{ }+.39 \sqrt{\mathrm{e}_{2}}+.01 \mathrm{e}_{3}$

- Previously: Decoder state looks for relevant encoder states
- Self-attention: Each encoder state now looks for relevant (other) encoder states
- Why? Build better representation for word in context by capturing relationships to other words

Change \#1: Self-attention

- Take x_{1} and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o_{1} as weighted sum of inputs

Change \#1: Self-attention

- Take x_{1} and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o_{1} as weighted sum of inputs
- Repeat for $t=2,3, \ldots, T$
- Replacement for recurrence
- RNN only allows information to flow linearly along sequence
- Now, information can flow from any index to any other index, as determined by attention

Change \#2: Separate queries, keys, and values

- Previously: We use input vectors in three ways
- As "query" for current index
- As "keys" to match with query
- As "values" when computing output
- Idea: Use separate vectors for each usage
- What each index "looks for" different from what it "matches with"
- What you store in output different from what you "look for"/"match with"

Change \#2: Separate queries, keys, and values

Probabilities for X_{1}
Dot products for X_{1}
Keys Tx dattn matrix

Queries Tx datn matrix

- Apply 3 separate linear layers to each of $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}$ to get
- Queries $\left[q_{1}, \ldots, q_{T}\right]$
- Keys $\left[\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{T}}\right]$
- Values $\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{T}}\right]$
- Note: This adds parameters $\mathrm{W}^{\mathrm{Q}}, \mathrm{W}^{\mathrm{K}}, \mathrm{W}^{\mathrm{V}}$
- Each linear layer maps from dimension d to dimension $\mathrm{d}_{\text {attn }}$
- Dot product q_{1} with $\left[\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{T}}\right]$
- Apply softmax to get probability distribution
- Compute o_{1} as weighted sum of $\left[\mathrm{v}_{1}, \ldots\right.$, V_{T}]
- Repeat for $t=2, \ldots, T$

Matrix form

- Apply 3 separate linear layers to input matrix X to get
- Query matrix Q
- Keys K
- Values V
- Note: This adds parameters $\mathrm{W}^{\mathrm{Q}}, \mathrm{W}^{\mathrm{K}}, \mathrm{W}^{\mathrm{V}}$
- Each linear layer maps from dimension d to dimension $\mathrm{d}_{\mathrm{attn}}$
- Compute $\mathrm{Q} \times \mathrm{K}^{\top}$ (T x T matrix)
- Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = P x V
- Lessons
- Quadratic in T
- All you need is fast matrix multiplication
- All indices run in parallel

Change \#3: Making it Multi-headed

- Instead of doing attention once, have n different "heads"
- Each has its own parameters maps to dimension $d_{a t t n}=d / n$
- Concatenate at end to get output of size T x d

Change \#3: Making it Multi-headed

Concatenate

$$
\kappa_{112} h_{12} h_{18} h_{14}
$$

$$
F_{21} \Gamma_{22} \Gamma_{23} I_{24}
$$

- Instead of doing attention once, have n different "heads"
- Each has its own parameters maps to dimension $d_{\text {attn }}=d / n$
- Concatenate at end to get output of size T x d
- Why? Different heads can capture different relationships between words

The Multi-headed Attention building block

(9) Multi-headed Attention Layer

- Input: List of vectors x_{1}, \ldots, x_{T}, each of size d
- Equivalent to a $\mathrm{T} \times \mathrm{d}$ matrix
- Output: List of vectors h_{1}, \ldots, h_{t}, each of size d
- Equivalent to another T x d matrix
- Formula: For each head i :
- Compute $\mathrm{Q}, \mathrm{K}, \mathrm{V}$ matrices using $\mathrm{W}_{\mathrm{i}}{ }^{\mathrm{Q}}, \mathrm{W}_{\mathrm{i}}{ }^{\mathrm{K}}, \mathrm{W}_{\mathrm{i}}{ }^{\mathrm{V}}$
- Compute self attention output using $\mathrm{Q}, \mathrm{K}, \mathrm{V}$ to yield Tx dattn matrix
- Finally, concatenate results for all heads
- Parameters:
- For each head i, parameter matrices $W_{i}{ }^{Q}, W_{i}{ }^{K}, W_{i}{ }^{V}$ of size $d_{\text {attn }} \times d$
- (\# of heads n is hyperparameter, $d_{a t t n}=d / n$)
- In pytorch: nn.MultiheadAttention()

Output h_{1}, \ldots, h_{T}, each shape d

Input x_{1}, \ldots, x_{T}, each shape d

What do attention heads learn?

Gender-specific term

Name

Layer: 5 :	
Later	Later
Alice	Alice
came	came
up	up
to	to
Bob	Bob
.	She
She	

- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
- In this way, can do RNN-like things as needed
- But attention also can reach across long ranges

Transformer internals

Multi-head Attention
Feedforward

- One transformer consists of
- Initial embeddings for each word of size d
- Let T = \#words, so initially we have a Txd matrix
- Alternating layers of
- "Multi-headed" attention layer
- Feedforward layer
- Both take in T x d matrix and output a new T x d matrix
- Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
- Both attention and feedforward layers are order invariant
- Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
- Learn a different vector for each index
- Gets added to word vector at that index

Runtime comparison

- RNNs
- Linear in sequence length
- But all operations have to happen in series
- Transformers
- Quadratic in sequence length ($\mathrm{T} \times \mathrm{T}$ matrices)
- But can be parallelized (big matrix multiplication)

Bells and whistles

- Attention: Scaled dot products
- Residual connections
- Layer Norm
- Tokenization: Byte Pair Encoding

Scaled dot product attention

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right] "$
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
-Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to 0/1
- Scaling dot products down encourages more even attention at beginning

Scaled dot product attention

This is bad at beginningshould give all positions a chance to influence

- Earlier I said, "Dot product q_{1} with $\left[k_{1}, \ldots, k_{T}\right] "$
- Actually, you take dot product and then divide by $\sqrt{d_{\text {attn }}}$
-Why?
- If d large, dot product between random vectors will be large
- This makes probabilities close to 0/1
- Scaling dot products down encourages more even attention at beginning

Residual Connections \& Layer Norm

- Feedforward and multi-headed attention layers
- Take in T x d matrix X
- Output Txd matrix 0
- We add a "residual" connection: we actually use $X+0$ as output
- Makes it easy to copy information from input to output
- Also reduces vanishing gradient issues
- Think of O as how much we change the previous value
- Then, we add "Layer Normalization" to prevent very big or very small values

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
- Names? Typos?
- Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
- Common words = 1 token
- Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

'Ar', 'ag', 'orn', ' told', ' Fro', 'do',
'to', 'mind', ' L', 'oth', 'Ior', 'ien'

12 subword tokens

Putting it all together

Multi-head Attention

Initial T x d matrix
BPE tokenization \uparrow add token embedding + positional embedding John kicked the ball \#words = T=4

Conclusion: Transformers

- "Attention is all you need"
- Get rid of recurrent connections
- Instead, all "communication" between words in sequence is handled by attention
- Have multiple attention "heads" to learn different types of relationships between words
- Most famous modern language models (e.g., ChatGPT) are Transformers!
- Next time: Transformers as Decoders, Pre-training
- Later: Transformers + Reinforcement Learning = ChatGPT

