
Deep Learning for Language,
Part 2: Sequence-to-sequence,
Attention

Robin Jia
USC CSCI 467, Fall 2023

October 5, 2023

Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word

2

…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax
Regression-style
classification over
Vocabulary + [END]

Autoregressive Language Model Training

• Training example: “Convolutional neural networks are good for image
classification”

• Want to maximize P(“Convolutional neural networks are good for image
classification”)

• Take log and decompose by chain rule:
 log P(“Convolutional”)

+ log P(“neural” | “Convolutional”)
+ log P(“networks” | “Convolutional neural”)
+ log P(“are” | “Convolutional neural networks”) + …

• Decomposes into a bunch of next-word-classification problems
• I will also write this as P(word | prefix)

3

Text classification (“Encoder only”)

• First run an RNN over
text

• Use the final hidden
state as an “encoding”
of the entire sequence

• Use this as features,
train a classifier on top

• Downside: Later words
processed better than
early words (long range
dependency issues)

4

…

To be or question

h1
h2

h3 hTh0

Classification
layer goes here

Output

Bi-directional encoders

• Run one RNN left-to-right,
and another one right-to-left
• (I’ll call forward-direction

hidden states ft, backward-
direction hidden states bt)

• Concatenate the 2 final
hidden states as final
representation
• Note: This encoding is twice

as large now—we’ve doubled
the number of features
passed to the final classifier

5

…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0

Concatenate & feed to
classification head

Sequence-to-sequence (“Encoder-decoder”)

• Example: Machine
Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English
sentence into vector
• E.g. Bidirectional encoder

+ MLP layer to generate
decoder’s initial state

• Decoder: Use vector as
initial hidden state and
start doing language
modeling in Spanish

• Vector space acts as a
“shared language”

6

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

What’s missing? Alignment

• Challenge: The single
encoder output has to
store information about
the entire sentence in a
single vector

• Would be much easier if
we can “refer to our
notes”

• Traditional MT:
Alignment between input
& output sentences

• Can we get a neural
network to model
alignments?

7

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

Attention
• Compute similarity between decoder

hidden state and each encoder hidden
state
• E.g., dot product, if same size

• Normalize similarities to probability
distribution with softmax

• Output: “Context” vector c = weighted
average of encoder states based on the
probabilities
• No new parameters (like ReLU/max pool)

• Use c when computing decoder
outputs or transitions

• Intuition
• Step 1: Find similar input words

• Step 2: Grab the encoder representation
of those words

• Step 3: Tell the decoder that this is
relevant

8

I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c

Dot Product

Example Attention Implementation

• Many similar ways one could implement an
attention mechanism

• Example from a well-known 2015 paper by
Luong et al. on machine translation
• Blue = encoder states

• Red = decoder states
• Note: Encoder was unidirectional here

• Dot-product decoder state ht with encoder
states, then apply softmax to produce
weights at

• Weighted sum of encoder states yields
context vector ct

• Context vector ct concatenated with decoder
state ht, fed through 1 MLP layer to generate
෨ℎ𝑡

• ෨ℎ𝑡 used to make prediction yt

9
Luong, Pham, and Manning. Effective Approaches to Attention-based Neural Machine Translation. EMNLP 2015.

Visualizing attention

• Source is English, Target is
French

• Each row is a probability
distribution over the English text

• Alignment makes sense,
overcomes word order
differences
• When generating “économique”

attend to “Economic”

• When generating “européenne”
attend to “European”

10

Conclusion

• Ways to use RNNs
• As a decoder: To generate text

• As an encoder: To produce feature vectors for text

• Sequence-to-sequence: Use 2 RNNs, one for each purpose

• Attention: Know which part of the input matters when generating
each word of the output

11

Announcements

• HW2 due today @ 11:59pm
• Q4: Don’t worry about differences in accuracy numbers when running same

code on different computers

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam next Tuesday, October 10
• In-class, 80 minutes, one double-sided 8.5x11 sheet of notes

• Room assignments (also on Piazza)
• Last name A-O: LVL 17 (this room)

• Last name P-Z: THH 116

12

	Default Section
	Slide 1: Deep Learning for Language, Part 2: Sequence-to-sequence, Attention
	Slide 2: Language Modeling (“Decoder only”)
	Slide 3: Autoregressive Language Model Training
	Slide 4: Text classification (“Encoder only”)
	Slide 5: Bi-directional encoders
	Slide 6: Sequence-to-sequence (“Encoder-decoder”)
	Slide 7: What’s missing? Alignment
	Slide 8: Attention
	Slide 9: Example Attention Implementation
	Slide 10: Visualizing attention
	Slide 11: Conclusion
	Slide 12: Announcements

