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Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word
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…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax 
Regression-style 
classification over 
Vocabulary + [END]



Autoregressive Language Model Training

• Training example: “Convolutional neural networks are good for image 
classification”

• Want to maximize P(“Convolutional neural networks are good for image 
classification”)

• Take log and decompose by chain rule:
   log P(“Convolutional”)

+ log P(“neural” | “Convolutional”)
+ log P(“networks” | “Convolutional neural”)
+ log P(“are” | “Convolutional neural networks”) + …

• Decomposes into a bunch of next-word-classification problems
• I will also write this as P(word | prefix)
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Text classification (“Encoder only”)

• First run an RNN over 
text

• Use the final hidden 
state as an “encoding” 
of the entire sequence

• Use this as features, 
train a classifier on top

• Downside: Later words 
processed better than 
early words (long range 
dependency issues)
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…

To be or question

h1
h2

h3 hTh0

Classification 
layer goes here

Output



Bi-directional encoders

• Run one RNN left-to-right, 
and another one right-to-left
• (I’ll call forward-direction 

hidden states ft, backward-
direction hidden states bt)

• Concatenate the 2 final 
hidden states as final 
representation
• Note: This encoding is twice 

as large now—we’ve doubled 
the number of features 
passed to the final classifier
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…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0

Concatenate & feed to 
classification head



Sequence-to-sequence (“Encoder-decoder”)

• Example: Machine 
Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English 
sentence into vector
• E.g. Bidirectional encoder 

+ MLP layer to generate 
decoder’s initial state

• Decoder: Use vector as 
initial hidden state and 
start doing language 
modeling in Spanish

• Vector space acts as a 
“shared language”
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I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]



What’s missing? Alignment

• Challenge: The single 
encoder output has to 
store information about 
the entire sentence in a 
single vector

• Would be much easier if 
we can “refer to our 
notes”

• Traditional MT: 
Alignment between input 
& output sentences

• Can we get a neural 
network to model 
alignments?
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I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]



Attention
• Compute similarity between decoder 

hidden state and each encoder hidden 
state
• E.g., dot product, if same size

• Normalize similarities to probability 
distribution with softmax

• Output: “Context” vector c = weighted 
average of encoder states based on the 
probabilities 
• No new parameters (like ReLU/max pool)

• Use c when computing decoder 
outputs or transitions

• Intuition
• Step 1: Find similar input words

• Step 2: Grab the encoder representation 
of those words

• Step 3: Tell the decoder that this is 
relevant
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I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6
f1

b3
+.39 

f2

b2

f3

b1
+.01c

Dot Product



Example Attention Implementation

• Many similar ways one could implement an 
attention mechanism

• Example from a well-known 2015 paper by 
Luong et al. on machine translation
• Blue = encoder states

• Red = decoder states
• Note: Encoder was unidirectional here

• Dot-product decoder state ht with encoder 
states, then apply softmax to produce 
weights at

• Weighted sum of encoder states yields 
context vector ct

• Context vector ct concatenated with decoder 
state ht, fed through 1 MLP layer to generate 
෨ℎ𝑡

• ෨ℎ𝑡 used to make prediction yt
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Visualizing attention

• Source is English, Target is 
French

• Each row is a probability 
distribution over the English text

• Alignment makes sense, 
overcomes word order 
differences
• When generating “économique” 

attend to “Economic”

• When generating “européenne” 
attend to “European”
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Conclusion

• Ways to use RNNs
• As a decoder: To generate text

• As an encoder: To produce feature vectors for text

• Sequence-to-sequence: Use 2 RNNs, one for each purpose

• Attention: Know which part of the input matters when generating 
each word of the output
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Announcements

• HW2 due today @ 11:59pm
• Q4: Don’t worry about differences in accuracy numbers when running same 

code on different computers

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam next Tuesday, October 10
• In-class, 80 minutes, one double-sided 8.5x11 sheet of notes

• Room assignments (also on Piazza)
• Last name A-O: LVL 17 (this room)

• Last name P-Z: THH 116
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