
Deep Learning for Language,
Part 1: Recurrent Neural
Networks

Robin Jia
USC CSCI 467, Fall 2023

October 3, 2023

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

2

Handling textual data

• Images: We assume inputs are fixed dimensional
• Can crop/rescale as needed

• Text: Inputs are naturally variable-sized!
• Example 1: Amazing!

• Example 2: There are many issues with this movie, such as…

• Challenge: How can we use the same set of model parameters to
handle inputs of any size?

3

Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time

• At each step, update the hidden state of the network

• Model parameters to do this update are same for each step

4

Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of
the same neural network

Output

Word Embeddings

• How do we “feed” the next
word to the RNN?

• Want to learn a vector that
represents each word
• For each word w in

vocabulary V, have vector vw
of size d

• |V| * d parameters needed

• Intuition: Similar words get
similar vectors
• More on learning word

vectors later in the class!

5

A “Vanilla”/”Elman” RNN

• At each timestep t, run a neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, word vectors

6

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear
function of

prev. hidden
state

Linear
function of

current word
vector

Same W’s & b for each timestep

question

Recurrence vs. Depth

• Deep networks (i.e., adding more layers)
• Computation graph becomes longer
• Number of parameters also grows; each step uses new parameters

• Recurrent neural networks
• Computation graph becomes longer
• Number of parameters fixed; each step uses same parameters

7

Final layer

Input x

First hidden
layer z(1)

Output y

Second hidden
layer z(2)

Third hidden
layer z(3)

Recurrence and Depth

• You can have multiple
layers of recurrence
too!
• Left-to-right axis (“time

dimension”): Length is
size of input, same
parameters in each
step

• Top-to-bottom axis
(“depth dimension”):
Length is depth of
network, different
parameters in each row

8

…

To be or question

h1
(1)h0

(1) h2
(1) h3

(1) hT
(1)

…h1
(2)h0

(2) h2
(2) h3

(2) hT
(2)

Layer 1

Layer 2

Training an RNN

• Same recipe: Backpropagation to compute gradients + gradient descent

• Must backpropagate through whole computation graph
• “Backpropagation through time”

• Same weights for recurrence used at every time step; total change to weights is
added up for each timestep

9

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Output

question

Initial hidden
state h0

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

10

Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word

11

…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax
Regression-style
classification over
Vocabulary + [END]

Language Modeling (“Decoder only”)

• Training a language model
• Input sequence is a real human-written document
• For each word, compute classification loss (like softmax regression) for model, using the actual human-

written next word as the correct “label”
• Sum up loss for whole document, then backpropagate & update parameters with gradient descent

12

…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax
Regression-style
classification over
Vocabulary + [END]

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

13

The keys to the cabinet ___ (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

14

The keys to the cabinet are (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

15

The keys to the cabinet by the door are (on the table)

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

16

The keys to the cabinet by the door on the left are (on the table)

Long-Range Dependencies

• “Coreference”: When two words
refer to the same underlying
person/place/thing
• Pronouns typically corefer to an
antecedent (something
mentioned earlier in the text)

• Coreference relationships can
even span multiple sentences

17

Even longer-range dependencies

• Imagine trying to generate a
novel…
• Same set of characters

• Characters have to behave in
consistent ways

• Sensible ordering of events

18

Announcements

• HW2 due this Thursday

• Thursday class: A bit more on RNNs + first half review

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam next Tuesday, October 10
• In-class, 80 minutes, one double-sided 8.5x11 sheet of notes

• Practice exam posted

• Room assignments (also on Piazza)
• Last name A-O: LVL 17 (this room)

• Last name P-Z: THH 116

19

Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs

20

Backpropagation through time, revisited

• Model needs to know that the correct word is are because of the word keys!

• Let’s backpropagate the loss on generating are to the word vector parameters for keys
• For simplicity, let’s assume all the hidden states are just 1-dimensional

• Step 1: Compute δLoss/δ(hT)
• Step 2: Compute δLoss/δ(hT-1) = δLoss/δ(hT) * δ(hT)/δ(hT-1)

• Step 3: Compute δLoss/δ(hT-2) = δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2)

• …
• Gradient through “keys” hidden state: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2)

• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2) * δ(h2)/δ(x2)
21

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

The Vanishing Gradient Problem

• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … *
δ(h3)/δ(h2) * δ(h2)/δ(x2)

• What is each individual δ(ht)/δ(ht-1) term ?

• Elman network:

• After t timesteps, have a factor of (Wh)t (to the t-th power)!

• If Wh << 1, this quickly becomes 0 (“vanishes”)
22

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Ignore for now The same
parameter

over and over!

The Vanishing Gradient Problem

• Vanishing Gradients: Updates to one word/hidden state not
influenced by loss on words many steps in the future
• Illustrated only for 1-dimensional hidden states, but same thing happens

when states are vectors/parameters are matrices

• Result: Hard for model to learn long-range dependencies!

23

…

on the left

h3 hT-1 hT

are Focus on loss
for this word

The keys

h1 h2…

Vanishing and Exploding

• Vanishing gradient occurs because
• Gradient w.r.t. words t steps in the past has (Wh)t

• And when Wh << 1 (e.g., at initialization time)

• What if Wh > 1?
• Gradients get bigger as you go backwards in time: Exploding gradients!
• Vanishing gradients more usual, but explosion can happen too

• Quick fix: Gradient Clipping
• If gradient is super large, “clip” it to some maximum amount

• Rescale the total vector to some maximum norm
• Clip each entry to be within some minimum/maximum value

• Outside of RNNs, vanishing/exploding gradients can happen whenever
you have long computation graphs with lots of multiplications

24

Avoiding Vanishing Gradients

• Where did we go wrong?

25

…

on the left

h3 hT-1 hT

Focus on loss
for this word

The keys

h1 h2…

are

Multiplicative
relationship between previous

state and next state

Leads to repeated
multiplication by Wh

Avoiding Vanishing Gradients

• Extreme idea: A purely additive
relationship
• Pro: No vanishing gradients
• Pro: Old hidden state carried

through to all future times

• Con: May be good to “forget”
irrelevant information about old
states

26

…

on the left

h3 hT-1 hT

Focus on loss
for this word

The keys

h1 h2…

are

Additive
relationship

Gradients also add,
not multiply

Avoiding Vanishing Gradients

• Middle-ground: Gated recurrence
relationship
• Additive component makes gradients add, not

multiply = less vanishing gradients
• Forget gate allows for selectively “forgetting”

some neurons within hidden state
• When forget gate is all 1’s, becomes the

purely additive model (no vanishing)

27

…

on the left

h3 hT-1 hT

Focus on loss
for this word

The keys

h1 h2…

are

Additive
relationship

“forget gate”
in [0, 1]

Elementwise multiplication

Gated Recurrent Units (GRUs)

• One type of gated RNN
• Here z is the “forget gate”

vector
• Where zi = 0:

• Forget this neuron
• Allow updating its value

• Where zi = 1:
• Don’t forget this neuron
• Do not allow updating its value

• Parameters: W, U, plus
parameters of g
• (g has a slightly complicated

form not shown, has its own
parameters)

28

Additive
relationship“forget gate”

Sigmoid ensures gate is
between 0 and 1

Long Short-Term Memory (LSTM)

• Another, more complicated gated
RNN

• Commonly used in practice

• What’s the idea?
• Split the hidden state into normal

hidden state ht and “cell” state ct

• Cell state uses gated recurrence

• Hidden state is gated function of cell
state

29

What do LSTMs learn?

• Here: a
character-level
LSTM (not
word-level)

• Blue/Green:
Low/high
values of 1
neuron

• Below: Top-5
predictions for
next character

• This neuron
seems to detect
whether we’re
inside a URL

30

What do LSTMs learn?

• Here: a character-
level LSTM (not
word-level)

• Blue/Green:
Low/high values
of 1 neuron

• Below: Top-5
predictions for
next character

• This neuron fires
only inside a
Markdown [[link]]
(so it knows
when to close the
square brackets?)

31

Conclusion

• Deep Learning for Language must deal with possibly long inputs

• RNNs handle arbitrarily long inputs with fixed number of
parameters

• Need to handle long-range dependencies, but hard to learn due to
vanishing gradients

• Gated RNNs (GRUs, LSTMs) can reduce vanishing gradient
problems

32

	Default Section
	Slide 1: Deep Learning for Language, Part 1: Recurrent Neural Networks
	Slide 2: Outline
	Slide 3: Handling textual data
	Slide 4: Recurrent Neural Networks (RNNs)
	Slide 5: Word Embeddings
	Slide 6: A “Vanilla”/”Elman” RNN
	Slide 7: Recurrence vs. Depth
	Slide 8: Recurrence and Depth
	Slide 9: Training an RNN
	Slide 10: Outline
	Slide 11: Language Modeling (“Decoder only”)
	Slide 12: Language Modeling (“Decoder only”)
	Slide 13: Long-Range Dependencies
	Slide 14: Long-Range Dependencies
	Slide 15: Long-Range Dependencies
	Slide 16: Long-Range Dependencies
	Slide 17: Long-Range Dependencies
	Slide 18: Even longer-range dependencies
	Slide 19: Announcements
	Slide 20: Outline
	Slide 21: Backpropagation through time, revisited
	Slide 22: The Vanishing Gradient Problem
	Slide 23: The Vanishing Gradient Problem
	Slide 24: Vanishing and Exploding
	Slide 25: Avoiding Vanishing Gradients
	Slide 26: Avoiding Vanishing Gradients
	Slide 27: Avoiding Vanishing Gradients
	Slide 28: Gated Recurrent Units (GRUs)
	Slide 29: Long Short-Term Memory (LSTM)
	Slide 30: What do LSTMs learn?
	Slide 31: What do LSTMs learn?
	Slide 32: Conclusion

