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Outline

• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs
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Handling textual data

• Images: We assume inputs are fixed dimensional
• Can crop/rescale as needed

• Text: Inputs are naturally variable-sized!
• Example 1: Amazing!

• Example 2: There are many issues with this movie, such as…

• Challenge: How can we use the same set of model parameters to 
handle inputs of any size? 
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Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time

• At each step, update the hidden state of the network

• Model parameters to do this update are same for each step
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Word Embeddings

• How do we “feed” the next 
word to the RNN?

• Want to learn a vector that 
represents each word
• For each word w in 

vocabulary V, have vector vw 
of size d

• |V| * d parameters needed

• Intuition: Similar words get 
similar vectors
• More on learning word 

vectors later in the class!
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A “Vanilla”/”Elman” RNN

• At each timestep t, run a neural network that takes in 2 inputs 
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, word vectors
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Recurrence vs. Depth

• Deep networks (i.e., adding more layers)
• Computation graph becomes longer
• Number of parameters also grows; each step uses new parameters

• Recurrent neural networks
• Computation graph becomes longer
• Number of parameters fixed; each step uses same parameters
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Recurrence and Depth

• You can have multiple 
layers of recurrence 
too!
• Left-to-right axis (“time 

dimension”): Length is 
size of input, same 
parameters in each 
step

• Top-to-bottom axis 
(“depth dimension”): 
Length is depth of 
network, different 
parameters in each row
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Training an RNN

• Same recipe: Backpropagation to compute gradients + gradient descent

• Must backpropagate through whole computation graph
• “Backpropagation through time”

• Same weights for recurrence used at every time step; total change to weights is 
added up for each timestep
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• Recurrent Neural Networks (RNNs) for sequential data

• Language modeling and Long-range dependencies

• Vanishing gradients and Gated RNNs
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Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word
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Language Modeling (“Decoder only”)

• Training a language model
• Input sequence is a real human-written document
• For each word, compute classification loss (like softmax regression) for model, using the actual human-

written next word as the correct “label”
• Sum up loss for whole document, then backpropagate & update parameters with gradient descent
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Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

16

The keys to the cabinet by the door on the left are (on the table)



Long-Range Dependencies

• “Coreference”: When two words 
refer to the same underlying 
person/place/thing
• Pronouns typically corefer to an 
antecedent (something 
mentioned earlier in the text)

• Coreference relationships can 
even span multiple sentences
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Even longer-range dependencies

• Imagine trying to generate a 
novel…
• Same set of characters

• Characters have to behave in 
consistent ways

• Sensible ordering of events
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Announcements

• HW2 due this Thursday

• Thursday class: A bit more on RNNs + first half review

• Section Friday: Midterm Review (practice exam + questions)

• Midterm exam next Tuesday, October 10
• In-class, 80 minutes, one double-sided 8.5x11 sheet of notes

• Practice exam posted

• Room assignments (also on Piazza)
• Last name A-O: LVL 17 (this room)

• Last name P-Z: THH 116
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• Vanishing gradients and Gated RNNs
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Backpropagation through time, revisited

• Model needs to know that the correct word is are because of the word keys!

• Let’s backpropagate the loss on generating are to the word vector parameters for keys
• For simplicity, let’s assume all the hidden states are just 1-dimensional

• Step 1: Compute δLoss/δ(hT)
• Step 2: Compute δLoss/δ(hT-1) = δLoss/δ(hT) * δ(hT)/δ(hT-1) 

• Step 3: Compute δLoss/δ(hT-2) = δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) 

• …
• Gradient through “keys” hidden state: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2) 

• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * δ(h3)/δ(h2) * δ(h2)/δ(x2)
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The Vanishing Gradient Problem

• Gradient through “keys” word vector: δLoss/δ(hT) * δ(hT)/δ(hT-1) * δ(hT-1)/δ(hT-2) * … * 
δ(h3)/δ(h2) * δ(h2)/δ(x2)

• What is each individual δ(ht)/δ(ht-1) term ?

• Elman network:

• After t timesteps, have a factor of (Wh)t (to the t-th power)!

• If Wh << 1, this quickly becomes 0 (“vanishes”) 
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The Vanishing Gradient Problem

• Vanishing Gradients: Updates to one word/hidden state not 
influenced by loss on words many steps in the future
• Illustrated only for 1-dimensional hidden states, but same thing happens 

when states are vectors/parameters are matrices

• Result: Hard for model to learn long-range dependencies!
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Vanishing and Exploding

• Vanishing gradient occurs because
• Gradient w.r.t. words t steps in the past has (Wh)t

• And when Wh << 1 (e.g., at initialization time)

• What if Wh > 1?
• Gradients get bigger as you go backwards in time: Exploding gradients!
• Vanishing gradients more usual, but explosion can happen too

• Quick fix: Gradient Clipping
• If gradient is super large, “clip” it to some maximum amount

• Rescale the total vector to some maximum norm
• Clip each entry to be within some minimum/maximum value

• Outside of RNNs, vanishing/exploding gradients can happen whenever 
you have long computation graphs with lots of multiplications
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Avoiding Vanishing Gradients

• Where did we go wrong?
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Avoiding Vanishing Gradients

• Extreme idea: A purely additive 
relationship
• Pro: No vanishing gradients
• Pro: Old hidden state carried 

through to all future times

• Con: May be good to “forget” 
irrelevant information about old 
states
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Avoiding Vanishing Gradients

• Middle-ground: Gated recurrence 
relationship
• Additive component makes gradients add, not 

multiply = less vanishing gradients
• Forget gate allows for selectively “forgetting” 

some neurons within hidden state
• When forget gate is all 1’s, becomes the 

purely additive model (no vanishing)

27

…

on the left

h3 hT-1 hT

Focus on loss 
for this word

The keys

h1 h2…

are

Additive
relationship

“forget gate”
in [0, 1]

Elementwise multiplication



Gated Recurrent Units (GRUs)

• One type of gated RNN
• Here z is the “forget gate” 

vector
• Where zi = 0:

• Forget this neuron
• Allow updating its value

• Where zi = 1:
• Don’t forget this neuron
• Do not allow updating its value

• Parameters: W, U, plus 
parameters of g
• (g has a slightly complicated 

form not shown, has its own 
parameters)
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Long Short-Term Memory (LSTM)

• Another, more complicated gated 
RNN

• Commonly used in practice

• What’s the idea?
• Split the hidden state into normal 

hidden state ht and “cell” state ct

• Cell state uses gated recurrence

• Hidden state is gated function of cell 
state
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What do LSTMs learn?

• Here: a 
character-level 
LSTM (not 
word-level)

• Blue/Green: 
Low/high 
values of 1 
neuron

• Below: Top-5 
predictions for 
next character

• This neuron 
seems to detect 
whether we’re 
inside a URL

30



What do LSTMs learn?

• Here: a character-
level LSTM (not 
word-level)

• Blue/Green: 
Low/high values 
of 1 neuron

• Below: Top-5 
predictions for 
next character

• This neuron fires 
only inside a 
Markdown [[link]] 
(so it knows 
when to close the 
square brackets?)
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Conclusion

• Deep Learning for Language must deal with possibly long inputs

• RNNs handle arbitrarily long inputs with fixed number of 
parameters

• Need to handle long-range dependencies, but hard to learn due to 
vanishing gradients

• Gated RNNs (GRUs, LSTMs) can reduce vanishing gradient 
problems
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