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think of this as function & : IR-IRB

Drawback : using & + logistic regression is by slower

For some o , you can quickly computer
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moreGenerally :
for degree p ,

k(x, xi)
= (x

+

x1 +1)P = 4(x) 0(x))

for some of that includes all monomials of degree P
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What about RBF ?

Fact:

exp(***"") = P(x) d(x)

for some P(X) that is infinite-dimensional
-

Runtime Comparison : its use polynomial Kernel it degree P
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· Map each x(:l to O(dP)-size · Use Kernel trick
feature vector

· Training : 1 iteration takes O(ndP) ·Training
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-vectormachines (SUM)
Difference:

Similarities to Logistic Regression SWM has no

· Binary classification probabilistic
· learn linear decision boundary interpretation
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Certain excupls are support vectors (green)
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in particular , ones where margin 1)

Ideal w only depends on support vectors
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e . it is a linear combination of Support vectors only
⑳toKernels :

We can Kernelize SUM's
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Xi = 0 if xil is not support vector

=> test time : only evaluate support vector Kernel calls

instead of n

away
: In practice , to use kernels, use SVM
don't use kernalized logistic regression


