Linear Regression II $(8 / 29 / 2023)$
(1) How do we learn more complex functions?
(2) Wiry does gradient descent wonk for linear reg?
(3) Why use squared error?

Linear regression is linear in the int featung
(that we can choose)
Integer Features?

Now: $\hat{y}=\omega_{x} \cdot \pi[$ Hel $=1]+w_{2} \cdot \mathbb{H}[$ Heed $=2]+\cdots$
parameters
"Facture Engineering": Process of crossing what features to use

Categorical features: add 11['s_condo], 11[is-tawnhouse] Convexity (why does gradient descant wince?)

(1) Linear regression lose function $L(\omega)$ is convex
(2) For any convex function, al local minima ore global minima
Def 1: $f(x)$ is convex $\Leftrightarrow f^{\prime \prime}(x) \geq 0$ every where

Def 2 (informal): Convex function "holds water"
Deft 3 (formal): A function f is convex if for every x, y in ire amain and evens $t \in[0,1]$

$$
f((1-t) x+t y) \leq(1-t) f(x)+t f(y)
$$

$T L ; D R:$
If you ara lire connecting ($x, f\left(x_{s}\right)$ $\otimes(y, f(y))$,
It mist he above the function
(1) AIl local minima of convex function are glebe Minima

(1) because x is Wal min, there's some seal t Sven that

$$
f((1-t) x+t y) \geq f(x)
$$

(2) Line from $(x, f(x))$ slopes downward
(3) So $f((1-t) x+t y))$ must be above the live betray + $8 y_{f}$ is not convex.
(2) Linear regression is convex

$$
\rightarrow L(\omega)=\frac{1}{n} \sum_{i=1}^{n}\left(\omega^{\top} x^{(i)}-y^{(i)}\right)^{2}
$$

Rules for convexity:
(1). If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f^{\prime \prime}(c) \geq 0$ everywhere $\&$ escorts everywhere then f is convex
(2) If f is convex, then $g(x)=f(A x+b)$ is conver any constants A,b
(3) If $f(x)$ and $g(x)$ are convex $f(x)+g(x)$ is conrex

(4) If $f(x)$ is convex, and $c>0$ $c f(x)$ is carvex

$$
\begin{aligned}
& C \in(x) \text { is candex } \\
& L(\omega)=\frac{1}{n} \sum_{i=1}^{n}\left(\omega^{\top} x^{(i)}-y^{(i)}\right) \text { why not } 4 ?
\end{aligned}
$$

(1) $f(x)=x^{2}$ is convex by (D)
(2) $\left(\omega^{\top} x^{(i)}-y_{i}^{(i)}\right)^{2}$ is conver (2)
poramedes costounts
(3) $\frac{c}{n} \sum_{i=1}^{n}\left(\omega^{T} x^{(i)}-y^{(i)}\right)^{2}$ is conver by
(3) $8(4)$

Why square? Maximum Likelihood Estimation
\rightarrow posit probabilustic process that geverake dota
\rightarrow choose porameters make obsened data moct likely?
E.g. coin fips oleerve $[H, T, H, H, H] \leftarrow$ olosened data conknown $p=$ prob. of heads \leftarrow parameter Goal: Cheose p that makes data most likely

Liner Regression: Assume y (i) drawn from Gaussian ω mean $\omega^{\top} x^{[.]}$\& variance θ^{3} determined by "true" value of intepersenty parameter ω
Recall Gaussian

$$
\begin{aligned}
& p\left(x ; N, \sigma^{2}\right) \\
& =\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-(x-N)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

(mean)
Livelhoood of data (probability of data as a function of w)

$$
\begin{aligned}
\mathcal{L}(\omega) & =\prod_{i=1}^{n} P\left(y^{(i)} \mid x^{(i)} ; \omega\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(y^{(i)}-\omega^{\top} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Trice' take the \log (monstonkely mereasing)

$$
\begin{aligned}
& \log 2(\omega)=\sum_{i=1}^{n} \frac{\log \left(\frac{1}{6 \sqrt{2 \pi}}\right)_{y}}{\left.l-\sqrt{-\frac{1}{2 \sigma^{2}}} \sum_{i=1}^{n}\left(y^{(i)}-\omega^{\top} x^{(i)}\right)^{2} \omega^{\top} x^{(i)}\right)^{2}} \\
&=\text { constant }+
\end{aligned}
$$

maximizing $\log \alpha(\omega)$ equivalent to minimizing old $L(\omega)$

