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Answer the questions in the spaces provided. If you run out of space, continue your work
on the last two pages, and indicate that your answer is there. You may use the backs of
pages for scratch work only. Please use pen for ease of grading. This exam has 7 questions,
for a total of 150 points.
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Question 1: K-Means and Global Optima (26 points)
Recall the k-means objective function is

L (z1:n, µ1:k) =
n∑

i=1

∥∥∥x(i) − µzi

∥∥∥2 ,
where z1:n are the cluster assignments, µ1:k are the corresponding cluster centroids, and x(i) is
the i-th input datapoint. Now consider the following dataset consisting of three datapoints in
a 2-D plane: {(0, 3), (0, 0), (4, 0)}.
(a) (6 points) Suppose you run k-means with k = 2 and have the initial cluster centers be

µ1 = (4, 0) and µ2 = (0, 3). What will be the final cluster centers when k-means converges?
Show your work and explain how you know that k-means has converged.

Solution: In the first round, we will group (0, 3) and (0, 0) together in cluster 2, and
(4, 0) will be by itself in cluster 1. Thus, we’ll get new cluster centers

µ1 = (4, 0), µ2 = (0, 1.5) .

This is a convergence point because (4, 0) is closer to µ1 and the other two points are
closer to µ2. Thus the cluster assignments do not change, so k-means has converged.

(b) (6 points) Prove that the above initialization converges to the global minimum for k = 2.
(Hint: Enumerate over all possible cluster assignments and compute the objective for each
assignment.)

Solution: There are three possible groupings:

1. (4, 0) with (0, 0); (0, 3)

2. (4, 0) with (0, 3); (0, 0)

3. (0, 3) with (0, 0); (4, 0)

The objective for (1.) is: 8; for (2.) is: 25/2; for (3.) is: 9/2. Using our initialization
in part (a) can lead us to group (0, 3) and (0, 0), and (4, 0) as the other group. This
assignment has the minimum loss. Hence, it’s a global minimum.

(c) (6 points) Suppose we pick two distinct datapoints (out of the three datapoints) uniformly
at random as the cluster centers at initialization. Will k-means always converge to the
global minimum on this dataset? Justify your answer.

Solution: There are three cases of the initialization choices:

1. Selecting (4, 0) and (0, 0)

2. Selecting (4, 0) and (0, 3)

3. Selecting (0, 3) and (0, 0)
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We have already studied case 2. For (1.), we will end up grouping (0, 3) with (0, 0).
Hence, this is an optimal global assignment. For (3.). we will end up grouping (4, 0)
with (0, 0). According to our discussion of (b), this is not an optimal assignment. So,
convergence the global minimum is not guaranteed.

(d) For this question, you may not use k-means as an answer for either part.

i. (4 points) Name one machine learning method from class (not including k-means) that
is guaranteed to converge to the global optimum of its objective function. Explain
why it is guaranteed.

Solution: Any linear supervised learning method (linear regression, logistic re-
gression, softmax regression, SVM) is guarnateed to converge because they solve
a convex problem.
PCA is also guaranteed to achieve the minimum because we can convert the
objective to a problem that has a closed-form solution based on eigenvectors of
the covariance matrix.

ii. (4 points) Name one machine learning method from class (not including k-means)
that is not guaranteed to converge to the global optimum of its objective function.
Explain why it is not guaranteed.

Solution: Any neural network-based learning method is a possible answer, as
they create non-convex learning problems. It is also valid to say that gradient
descent is not guaranteed to converge in general.
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Question 2: Transformers and Multi-Headed Attention (24 points)
Consider a Transformer model with a single 1-headed self-attention layer. As input, we pass
in four words, each represented with an embedding of dimension 2. That is, the inputs are
vectors w1, w2, w3, w4 ∈ R2.

The single headed self-attention layer is parameterized by matrices K,Q, V ∈ R2×2. For each
wi, the key, query, and value vectors are defined as ki = Kwi, qi = Qwi, and vi = V wi,
respectively. For simplicity, we provide the following values:

q1 =

[
3
7

]
q2 =

[
1
0

]
q3 =

[
0
2

]
q4 =

[
2
5

]
k1 =

[
1
12

]
k2 =

[
1
12

]
k3 =

[
1
12

]
k4 =

[
1
26

]
v1 =

[
12
6

]
v2 =

[
9
3

]
v3 =

[
3
6

]
v4 =

[
4
1

]
(Note: The values here are created for ease of calculation. Technically, these values are not
possible, since k1, k2, k3 are identical but q1, q2, q3 are not.)

(a) (6 points) Assume this transformer is an encoder. Calculate the output of self-attention
for w2. Note that your answer should be a vector ∈ R2.

Solution: We note that q2ki, for all i from 1 to 4, equals 1. Thus, the self attention
will assign equal weighting to all the vi vectors. Thus, the output of the self attention

for q2 is thus the sum of each of the vi vectors divided by 4. The answer is thus

(
7
4

)
.

(b) (6 points) Now assume this transformer is a decoder. Calculate the output of self-attention
for w3. Again, note that your answer should be a vector ∈ R2.

Solution: It is important to note that since this is a decoder, we are masking out all
future tokens during calculation. Thus, the self attention for w3 does not attend to
w4.

We note that q3ki, for all i from 1 to 3, equals 24. Thus, the self attention will assign
equal weighting to the first three vi vectors. Thus, the output of the self attention for

q3 is thus the sum of v1, v2, v3 vectors divided by 3. The answer is thus

(
8
5

)
.

When using a decoder, you can attend to past words and the current word, just not
future words.

(c) (4 points) During lecture, we saw that the entire self attention mechanism can be repre-
sented in matrix form. Why is it important that we are able to do this?

Solution: Hardware are often optimized for matrix calculations (think numpy), which
allow for parallelization of computation.

(d) (4 points) Ryan is training a Transformer language model, but it is taking a long time.
He notices that the multi-headed attention layers are slow, so he decides to remove all the
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multi-headed attention layers from the model. Will the model still perform similarly as
before, or will it perform much worse? Explain why.

Solution: It will perform much worse. The multi-headed attention layer is the only
part of the Transformer where information from other tokens can be accessed. Without
this, the model will be unable to look at anything besides the current word when
predicting the next word.

(e) (4 points) Transformer models commonly have multiple layers of multi-headed attention,
such as having 12 layers with 12 heads each. An alternative would be to have a single
layer with 144 heads, thus having the same total number of attention heads. Give one
reason why using 12 layers and 12 heads is generally preferable.

Solution: In general, the advantage of having multiple layers is that later layers can
build more complex features that depend on earlier features. If you have a single layer
with many heads, no head can use the result of another head to build more complex
features.
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Question 3: Linear Models and PCA (23 points)
Vishesh is training a linear model on medical data. Each example represents information about
a patient collected at a doctor’s visit, including their height, medical history, blood test results,
etc. The classifier is trying to predict whether the patient required any type of surgery in the 5
years following their visit. He has n training examples, and each training input x(i) is a vector
∈ Rd, where d is much larger than n.

(a) (2 points) Is Vishesh solving a regression, binary classification, or multi-class classification
problem?

Solution: This is binary classification.

(b) (3 points) Explain why having d much larger than n could lead to problems in this sce-
nario.

Solution: Having d >> n makes it very likely that the model will overfit. There is
not enough information in the n examples to learn weights for all d features well.

(c) (4 points) Vishesh knows that PCA can be used to address the issue of d being much
larger than n. Explain how PCA could be helpful.

Solution: Vishesh could run PCA on the dataset first and extract the top k principal
components for some k < n. This would reduce the dimensionality of the examples
from d to k, so there would no longer be the issue of having too many features relative
to the number of examples.

(d) (4 points) If Vishesh were to use PCA to address this issue, this would introduce an
additional hyperparameter for his classification problem. What is this hyperparameter
and how should Vishesh choose a good value for it?

Solution: The new hyperparameter is the number of principal components to use k.
He should choose this by trying different values of k and evaluating the resulting model
on a development set.

(e) (6 points) An alternative strategy would be to use L1 regularization instead of PCA. L1

regularization will cause many of the classifier’s weights to be 0, which essentially means
those features get ignored. Give one reason for why L1 regularization might perform better
than using PCA.

(Hint: Imagine that Vishesh is performing multiple tasks with the same dataset, e.g., he
could either try to predict whether the patient will require surgery in five years, or whether
they will have another doctor visit within the next year. Think about what L1 regularization
would do in these two scenarios compared with what PCA would do.)

Solution: The key difference is that PCA only looks at the x’s and not the y’s. There-
fore, for a fixed value of k, PCA will always return the same k features. However, L1

regularization is applied during supervised learning, so depending on the classification
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task, it could choose a different subset of features for one task vs. another task. This
means it can be more customized towards whatever the model is trying to predict.

(f) (4 points) A local hospital has heard about Vishesh’s model and wants to use it to decide
which patients should get priority when scheduling doctor’s visits. Vishesh is concerned
that the model could be unfair to members of different racial groups. Describe one eval-
uation metric that Vishesh could use to measure the fairness of the model. (You don’t
need to remember the exact name of the metric. If you do give the name, you should still
explain what it does.)

Solution: Any of the allocative harm-based fairness metrics discussed in class is an
appropriate answer. This includes:

• Checking if race is independent of the model prediction

• Checking if the model’s precision is the same for all racial groups

• Checking if the model’s recall is the same for all racial groups
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Question 4: Explaining Q-Learning (18 points)
In class, we saw the following update rule for Tabular Q-Learning:

Q̂(s, a)← (1− η)Q̂(s, a) + η(r + γV̂ (s′)).

(a) (4 points) What is the difference between choosing a large value of η and a small value of
η?

Solution: A large value of η is a larger learning rate, and it means that the current
observations are given more weight when updating the Q-value. A small value of η
means we rely more on the previous observations rather than the current one.

(b) (6 points) In class, we discussed two quantities, V̂ (s′) and VOPT(s
′). Explain (1) the

difference between these two quantities and (2) why the Q-learning update rule uses
V̂ (s′) instead of VOPT(s

′).

Solution:

1. The difference is that V̂ (s′) is defined in terms of our model’s predictions of
the Q-value, whereas VOPT(s

′) is defined in terms of the true Q-value and true
optimal policy.

2. We cannot use VOPT(s
′) during Q-learning because we can only compute it if we

actually knew the exact transitions and rewards of the MDP, but these are not
known during reinforcement learning.

(c) (4 points) In class, we learned about something called ϵ-Greedy. What is the purpose of
ϵ-Greedy? What would go wrong if we did not use ϵ-Greedy when running Q-learning?

Solution: The purpose is to encourage exploration by occasionally choosing random
actions. Without ϵ-Greedy, the agent could rule out good actions based on a single
bad experience, and get stuck with a suboptimal policy.

(d) (4 points) Your friend knows that the choice of ϵ affects the final result of Q-learning, but
is confused about how this is possible because ϵ does not show up in the update rule for
Tabular Q-learning. Explain which parts of the Q-learning update rule would be directly
affected when ϵ is changed, and why.

Solution: The use of ϵ-Greedy affects what states s and actions a are tried. In other
words, ϵ affects the data that is used to perform the Q-learning updates.
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Question 5: Backpropagation (25 points)
Consider the 152-layer neural network in the figure below. Throughout the question, we assume
that the training example is (x, y) where x = (x1, x2) ∈ R2 and y ∈ R (all activations and
gradients are with respect to this training example). The network has no bias terms, and it
is fully-connected only for the final output node (i.e. the input x1 is not connected to the red
node in the next layer and so on, except for the last output node).

The network has a total of 152×2 = 304 parameters, namely w
(1)
1 , . . . , w

(152)
1 and w

(1)
2 , . . . , w

(152)
2 .

It has two neurons in each layer, except for the final output layer. The network computes a
prediction as follows:

• In the first layer, each neuron o
(1)
i is computed by first computing a

(1)
i = w

(1)
i xi, and then

applying the activation function h: o
(1)
i = h(a

(1)
i ). For example, the red node takes in x2,

computes a
(1)
2 = w

(1)
2 x2, and outputs o

(1)
2 = h(a

(1)
2 ).

• Each subsequent layer before the last layer works the same way, except it takes the previous

layer’s output as input. So, o
(j)
i is computed by first computing a

(j)
i = w

(j)
i o

(j−1)
i , then

outputting o
(j)
i = h(a

(j)
i ).

• The final layer takes in the outputs of the penultimate layer, o
(151)
1 and o

(151)
2 , and outputs

o(152) = w
(152)
1 o

(151)
1 + w

(152)
2 o

(151)
2 .

The activation function h(a) is the same for every neuron.

The network is trained on the standard squared loss, so that L(w) = 1
2(o

(152) − y)2 for the
example (x, y), where w is the vector of all the weights in the network.

Note: For parts (a), (b), and (c), you can use the notation h′(a) to represent the derivative of
the activation function h(·) with respect to some input a in your answer.

(a) (3 points) Derive the expression for ∂L(w)

∂o(152)
.

Solution:
∂L(w)

∂o(152)
=

∂

∂o(152)

(1
2
(o(152) − y)2

)
= (o(152) − y)

(b) (4 points) Derive the expression for ∂L(w)

∂w
(152)
1

.

Solution: We can apply the chain rule to compute that:

∂L(w)

∂w
(152)
1

=
∂L(w)

∂o(152)
· ∂o

(152)

∂w
(152)
1

= (o(152) − y) · o(151)1 .
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(c) (10 points) Derive the expression for ∂L(w)

∂w
(1)
1

.

(Hint: Use the chain rule, for example,
∂o

(j)
1

∂o
(j−1)
1

=
∂o

(j)
1

∂a
(j)
1

∂a
(j)
1

∂o
(j−1)
1

.)

Solution: First, let’s compute:

∂L(w)

∂o
(1)
1

=
∂L(w)

∂o(152)
· ∂o

(152)

∂o
(151)
1

· ∂o
(151)
1

∂o
(150)
1

· · · ∂o
(2)
1

∂o
(1)
1

=
∂L(w)

∂o(152)
· ∂o

(152)

∂o
(151)
1

·
150∏
j=1

∂o
(j+1)
1

∂o
(j)
1

The first term in this product was already computed in part (a).

The second term we can compute directly:

∂o(152)

∂o
(151)
1

= w
(152)
1 .

Now we compute the third term. For each j = 1, · · · , 150, we know that o
(j+1)
1 =

h(a
(j+1)
1 ) and a

(j+1)
1 = w

(j+1)
1 o

(j)
1 , so

∂o
(j+1)
1

∂o
(j)
1

=
∂o

(j+1)
1

∂a
(j+1)
1

· ∂a
(j+1)
1

∂o
(j)
1

= h′(a
(j+1)
1 ) · w(j+1)

1

for l = j, · · · , 150. Putting all this together, we get:

∂L(w)

∂o
(1)
1

= (o(152) − y) · w(152)
1 ·

150∏
j=1

h′(aj+1
1 )w

(j+1)
1 .

Finally, w
(1)
1 affects o

(1)
1 (and does not have any direct effect on any other nodes in the

computation graph), so we have:

∂L(w)

∂w
(1)
1

=
∂L(w)

∂o
(1)
1

· ∂o
(1)
1

∂w
(1)
1

=
∂L(w)

∂o
(1)
1

· ∂o
(1)
1

∂a
(1)
1

· ∂a
(1)
1

∂w
(1)
1

=
∂L(w)

∂o
(1)
1

· h′(a(1)1 ) · x1

Putting everything together, this means our final answer is:

∂L(w)

∂w
(1)
1

= (o(152) − y) · h′(a(1)1 ) · x1 · w(152)
1 ·

150∏
j=1

h′(a
(j+1)
1 )w

(j+1)
1

= (o(152) − y) · x1 ·

151∏
j=1

h′(a
(j)
1 )

 ·
152∏

j=2

w
(j)
1

 .

Forgetting an entire step is a bigger math mistake and should be penalized by at least
-1.
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(d) (4 points) Bill decides to use the sigmoid activation function h(a) = 1
1+e−a for all nodes

in this neural network. He notices that when he is trying to train this model, ∂L(w)

∂w
(1)
1

is very

close to 0. Using your expression from the previous part, explain why this is the case.

(Hint: The gradient of h(a) is h′(a) = h(a)(1− h(a)). You may use the fact that for any
real number a, the quantity h(a)(1− h(a)) is always between 0 and 0.25.)

Solution: When h(a) is the sigmoid activation, h′(a) ∈ [0, 0.25]. This means that the
derivative from the previous part contains the product of 151 h′(a) values. Since each
of these is at most 0.25, the product of all these values will become very close to 0.

If they have an off-by-one error in part (c) in terms of how many copies of h′(a) get
multiplied together, that should not get penalized here.

(e) In class, we learned about a phenomenon where the gradient can often become zero when
the computation graph is very long.

i. (2 points) Give the name for this phenomenon.

Solution: This is the vanishing gradient problem.

ii. (2 points) Name one strategy that can be used to combat this phenomenon. (Your
answer does not need to apply to the neural network in this question.)

Solution: Acceptable strategies include:

• Using gated connections, such as in a GRU or LSTM.

• Using residual connections

• Using ReLU instead of sigmoid.
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Question 6: Short Response (14 points)
Answer the following questions and explain your reasoning fully. You may also draw
explanatory diagrams when appropriate.

(a) (4 points) Wenyang has a CNN model for image classification that uses multiple conv-
relu-pool blocks, followed a single feedforward layer. She decides to change all the max
pooling layers in her network from 2 × 2 to 4 × 4, while the number of layers, type of
layers, kernel sizes, and number of input/output channels will stay the same. The size of
the input images also does not change. Will the number of parameters in her model have
to increase, decrease, or stay the same?

Solution: The total number of parameters will decrease. A 4× 4 max pooling layer
reduces the size of the input by a larger factor than the 2×2 max pooling layer. Thus,
the input to the feedforward layer will be smaller, and thus require fewer parameters.

This is close but not completely correct. Other wrong answers should receive lower
marks. 3/4 for saying the CNN layers will have fewer parameters—the problem says
that the kernel sizes stay the same.

(b) (4 points) Suppose we want to run linear regression on the following data points. Is there
a unique solution for w that minimizes the linear regression loss function?

x1 x2 y

1 2 5
3 6 1
-2 -4 0

Solution: Answer: No. One feature is linearly dependent on another feature, as
x2 = 2x1 for all data points. This means that X⊤X is not invertible and thus there is
no unique solution.

(c) (6 points) Lorena is training a supervised learning model and keeps collecting more and
more training data. As the amount of training data increases,

• The variance of the model (gets larger/gets smaller/stays the same).

• The bias of the model (gets larger/gets smaller/stays the same).

Circle one choice for each bullet point and explain your answers.

Solution: Our model will have have a lower variance but the same bias.

As we increase the amount of training data, the learning algorithm will get closer and
closer to finding the best possible model within the model family, since it will overfit
less and less. This means the variance decreases.

The bias in a model is determined by the complexity of the model family (we are
restricted to a set of possible functions we can learn). The amount of training data
doesn’t change the model’s complexity; it only helps the model to estimate its param-
eters within its complexity constraints relatively more accurately, so we still have the
same bias.
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Question 7: Multiple Choice (20 points)
In the following questions, circle the correct answer(s). There is no need to explain your answer.

(a) (2 points) True or False: The sigmoid function σ(z) = 1
1+e−z from R → R is a convex

function.

Solution: False. It is not convex; however, log-sigmoid is convex.

(b) (2 points) True or False: Decision trees do not suffer from overfitting problems because
all x’s assigned to the same leaf node receive the exact same prediction.

Solution: False. Decision trees can overfit the training data just like other methods.

(c) (2 points) True or False: One difference between k-means and GMM is that k-means
uses hard assignments whereas GMM uses soft assignments.

Solution: True. k-means assigns each point to a single cluster, whereas GMM infers
a distribution over clusters for each point.

(d) (2 points) True or False: The SVM algorithm minimizes L2-regularized hinge loss.

Solution: True. SVM minimizes the sum of hinge loss on the training data and an
L2 regularization term.

(e) (2 points) True or False: Adding Dropout is a viable way to regularize a Transformer
model.

Solution: True. Transformers include feedforward layers, where Dropout can be ap-
plied.

(f) (2 points) True or False: In a Markov Decision Process, if an agent visits the same state
twice and takes the same action each time, the probability of transitioning to an end state
is guaranteed to be the same for both times.

Solution: True. This is a consequence of the Markov property.

(g) (2 points) Which of the following statements is true about the total number of parameters
learned by word2vec?

A. It is equal to the dimension of one word vector.

B. It is proportional to the size of the training dataset.

C. It is proportional to the size of the vocabulary.

D. word2vec does not learn any parameters.

Solution: C is correct, since we learn one word vector for each word in the vocabulary.

(h) (3 points) Which of the following statements about PCA are true? Choose all that apply.

A. PCA involves randomly initializing a guess for the best dimension.
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B. PCA computes a non-linear transformation of the original dataset.

C. PCA requires computing eigenvalues and eigenvectors of the covariance matrix.

D. PCA can be used to visualize data.

Solution: The answer is CD.

(i) (3 points) Which of the following are best practices for responsible machine learning?
Choose all that apply.

A. It is important to identify the right metrics to quantify the performance of the
ML model (such as accuracy, precision, recall, performance on sub-groups, etc.)

B. The model may latch onto spurious correlations to make their predictions, so
should be tested extensively in use cases that directly impact many people.

C. The model should be tested on diverse data that reflects the use cases in deploy-
ment.

D. The model should not be monitored or updated after deployment.

Solution: The answer is ABC.

This content is protected and may not be shared, uploaded, or distributed. Page 14 of 16



[This page provides extra space for answers]

This content is protected and may not be shared, uploaded, or distributed. Page 15 of 16



[This page provides extra space for answers]

This content is protected and may not be shared, uploaded, or distributed. Page 16 of 16


